Journal of the Chinese Ceramic Society, Volume. 51, Issue 2, 405(2023)

A Quantitative Noise Method to Evaluate Machine Learning Algorithm on Multi-Fidelity Data

LIU Xiaotong1,2、*, WANG Ziming2, OUYANG Jiahua3, and YANG Tao1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(22)

    [1] [1] MUFTI B, CHEN M, PERRON C, et al. A Multi-Fidelity Approximation of the Active Subspace Method for Surrogate Models with High-Dimensional Inputs[C]//AIAA AVIATION 2022 Forum. Chicago: the American Institute of Aeronautics and Astronautics, Inc, 2022: 3488.

    [2] [2] DE HOOP M V, ZHENGYU HUANG D, QIAN E, et al. The cost-accuracy trade-off in operator learning with neural networks [J]Mathemat: Numerical Anal, 2022. Doi: 10.48550/arXiv.2203.13181.

    [3] [3] ZIMMER L, LINDAUER M, HUTTER F. Auto-pytorch: Multi-fidelity metalearning for efficient and robust AutoDL[J]. IEEE Trans Pattern Anal Mach Intell, 2021, 43(9): 3079-3090.

    [4] [4] ARRIETA A. Multi-Fidelity digital twins: a means for better cyber-physical systems testing?[J]. Comput Sci: Software Eng. 2021. Doi: 10.48550/arXiv.2101.05697

    [6] [6] JAIN A, ONG S P, HAUTIER G, et al. Commentary: The materials project: A materials genome approach to accelerating materials innovation[J]. APL Mater, 2013, 1(1): 011002.

    [7] [7] KIRKLIN S, SAAL J E, MEREDIG B, et al. The open quantum materials database (OQMD): Assessing the accuracy of DFT formation energies[J]. Comput Mater Sci, 2015(1): 15.

    [8] [8] MORALES-GARCíA ?, VALERO R, ILLAS F. An empirical, yet practical way to predict the band gap in solids by using density functional band structure calculations[J]. J Phys Chem C, 2017, 121(34): 18862-18866.

    [10] [10] CHEN C, ZUO Y, YE W, et al. Learning properties of ordered and disordered materials from multi-fidelity data[J]. Nat Comput Sci, 2021, 1(1): 46-53.

    [11] [11] BATRA R, PILANIA G, UBERUAGA B P, et al. Multifidelity information fusion with machine learning: A case study of dopant formation energies in hafnia[J]. ACS Appl Mater Interf, 2019, 11(28): 24906-24918.

    [12] [12] TRAN A, TRANCHIDA J, WILDEY T, et al. Multi-fidelity machine-learning with uncertainty quantification and Bayesian optimization for materials design: Application to ternary random alloys[J]. J Chem Phys, 2020, 153(7): 074705.

    [13] [13] GREENMAN K P, GREEN W H, GóMEZ-BOMBARELLI R. Multi-fidelity prediction of molecular optical peaks with deep learning[J]. Chem Sci, 2022, 13(4): 1152-1162.

    [14] [14] LIU X, DE BREUCK P-P, WANG L, et al. A simple denoising approach to exploit multi-fidelity data for machine learning materials properties[J]. NPJ Comput Mater, 2022, 8(1): 233.

    [17] [17] RAMAKRISHNAN R, DRAL P O, RUPP M, et al. Quantum chemistry structures and properties of 134 kilo molecules[J]. Sci Data, 2014, 1(1): 1-7.

    [18] [18] RUDDIGKEIT L, VAN DEURSEN R, BLUM L C, et al. Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17[J]. J Chem Inform Model, 2012, 52(11): 2864-2875.

    [19] [19] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865.

    [20] [20] HEYD J, SCUSERIA G E, ERNZERHOF M. Hybrid functionals based on a screened Coulomb potential[J]. J Chem Phys, 2003, 118(18): 8207-8215.

    [21] [21] JIE J, WENG M, LI S, et al. A new MaterialGo database and its comparison with other high-throughput electronic structure databases for their predicted energy band gaps[J]. Sci Chin Technol Sci, 2019, 62(8): 1423-1430.

    [22] [22] SUN J, RUZSINSZKY A, PERDEW J P. Strongly constrained and appropriately normed semilocal density functional[J]. Phys Rev Lett, 2015, 115(3): 036402.

    [23] [23] GRITSENKO O, VAN LEEUWEN R, VAN LENTHE E, et al. Self-consistent approximation to the Kohn-Sham exchange potential[J]. Phys Rev A, 1995, 51(3): 1944.

    [24] [24] KUISMA M, OJANEN J, ENKOVAARA J, et al. Kohn-Sham potential with discontinuity for band gap materials[J]. Phys Rev B, 2010, 82(11): 115106.

    [25] [25] CHEN C, YE W, ZUO Y, et al. Graph networks as a universal machine learning framework for molecules and crystals[J]. Chem Mater, 2019, 31(9): 3564-3572.

    Tools

    Get Citation

    Copy Citation Text

    LIU Xiaotong, WANG Ziming, OUYANG Jiahua, YANG Tao. A Quantitative Noise Method to Evaluate Machine Learning Algorithm on Multi-Fidelity Data[J]. Journal of the Chinese Ceramic Society, 2023, 51(2): 405

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Sep. 29, 2022

    Accepted: --

    Published Online: Mar. 11, 2023

    The Author Email: LIU Xiaotong (liuxiaotong@bistu.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20220811

    Topics