Laser & Optoelectronics Progress, Volume. 58, Issue 14, 1410012(2021)

Lightweight Semantic Segmentation Network Based on Attention Coding

Xiaolong Chen1、*, Ji Zhao1,2, and Siyi Chen1、**
Author Affiliations
  • 1School of Automation and Electronic Information, Xiangtan University, Xiangtan, Hunan 411100, China
  • 2National CIMS Engineering Technology Research Center, Tsinghua University, Beijing 100084,China
  • show less
    Figures & Tables(10)
    Lightweight network based on attention coding
    Structure of the APAM
    Structure of the GAU module
    Segmentation results of different algorithms. (a) Original image; (b) real semantic label; (c) basic algorithm; (d) our algorithm
    • Table 1. Influence of APAM basis set number on segmentation accuracy

      View table

      Table 1. Influence of APAM basis set number on segmentation accuracy

      AlgorithmBase sizemIoU /%
      Baseline--69.8
      Ours-13683.3
      Ours-24983.4
      Ours-36483.5
      Ours-48183.6
      Ours-510083.6
    • Table 2. Segmentation results of different attention modules

      View table

      Table 2. Segmentation results of different attention modules

      AlgorithmBase sizemIoU /%
      MHA[23]--59.95
      SGE[24]--58.90
      PAM--70.71
      CAM--70.53
      Ours(average)6470.99
      Ours(max)6469.93
    • Table 3. Structural analysis of the APAM

      View table

      Table 3. Structural analysis of the APAM

      CFLCFmIoU /%
      F1concat84.6
      F2concat83.2
      F3concat83.3
      F4concat81.4
      F4sum84.5
      F5sum84.9
      F6sum84.9
    • Table 4. Performance parameters of different algorithms

      View table

      Table 4. Performance parameters of different algorithms

      AlgorithmGFLOPSParams /MMemory /GmIoU /%
      FCN216.054.07.769.8
      U-net262.234.58.770.8
      SegNet244.632.48.971.1
      DeepLab v2251.744.68.071.6
      PSP254.767.68.180.9
      DANet275.468.59.385.1
      Ours228.867.78.184.9
    • Table 5. Classification results of different algorithms on the PASCAL VOC2012 validation set unit: %

      View table

      Table 5. Classification results of different algorithms on the PASCAL VOC2012 validation set unit: %

      AlgorithmFCNDeepLab v2DPN[25]DeepLab v3+PSPResNet38[26]EncNet[27]Ours
      aero82.484.487.788.087.494.494.191.6
      bike47.454.559.456.356.372.969.257.9
      bird81.281.578.486.385.794.996.390.0
      boat68.663.664.969.479.468.876.785.5
      bottle75.365.970.372.273.878.486.282.5
      bus81.385.189.390.392.390.696.395.0
      car79.979.183.585.787.390.090.790.8
      cat81.683.486.189.692.392.194.294.0
      chair33.730.731.728.953.340.138.853.8
      cow68.474.179.985.990.490.490.793.7
      table52.359.862.659.375.271.773.378.0
      dog76.479.081.984.287.389.990.093.0
      horse64.976.180.080.285.993.792.591.4
      mbike73.483.283.584.283.891.088.887.1
      person81.280.882.382.884.589.187.988.2
      plant56.759.760.556.068.171.368.774.1
      sheep69.782.283.278.587.090.792.691.3
      sofa50.950.453.451.673.061.359.075.8
      train78.573.177.984.591.187.786.492.8
      tv70.163.765.069.671.578.173.480.6
      mIoU69.871.674.175.180.982.582.984.9
    • Table 6. Classification results of different algorithms on the Cityscapes validation set unit: %

      View table

      Table 6. Classification results of different algorithms on the Cityscapes validation set unit: %

      AlgorithmFCNPSPDenseASPP[28]DANetOurs
      road95.196.497.397.297.4
      sidewalk67.874.478.177.879.4
      building88.589.189.589.890.0
      wall50.552.956.056.157.0
      fence44.647.948.548.651.1
      pole35.639.940.340.843.5
      traffic light47.051.952.853.053.4
      Traffic sign60.462.465.365.266.5
      vegetation88.689.489.689.789.8
      terrain55.657.660.560.760.9
      sky91.492.092.392.492.7
      person68.870.471.471.972.8
      rider47.949.952.052.253.4
      car90.391.492.192.492.4
      truck73.873.983.082.879.3
      bus73.675.880.279.481.9
      train62.866.470.470.874.3
      motocycle51.755.058.458.958.6
      bicycle63.163.665.565.866.6
      mIoU66.268.470.770.871.6
    Tools

    Get Citation

    Copy Citation Text

    Xiaolong Chen, Ji Zhao, Siyi Chen. Lightweight Semantic Segmentation Network Based on Attention Coding[J]. Laser & Optoelectronics Progress, 2021, 58(14): 1410012

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Sep. 16, 2020

    Accepted: Nov. 14, 2020

    Published Online: Jun. 30, 2021

    The Author Email: Xiaolong Chen (350071235@qq.com), Siyi Chen (c.siyi@xtu.edu.cn)

    DOI:10.3788/LOP202158.1410012

    Topics