Frontiers of Optoelectronics, Volume. 17, Issue 4, 32(2024)
Quantitative modeling of perovskite-based direct X-ray flat panel detectors
[1] [1] Kim, Y.C., Kim, K.H., Son, D.Y., Jeong, D.N., Seo, J.Y., Choi, Y.S., Han, I.T., Lee, S.Y., Park, N.G.: Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature 550(7674), 87–91 (2017)
[2] [2] Medical electrical equipment – characteristics of digital X-ray imaging devices – part 1: Determination of the detective quantum efficiency. (2003)
[3] [3] Konstantinidis, A.C., Szafraniec, M.B., Speller, R.D., Olivo, A.: The Dexela 2923 CMOS X-ray detector: a flat panel detector based on CMOS active pixel sensors for medical imaging applications. Nucl. Instrum. Methods Res. A. 689, 12–21 (2012)
[4] [4] Deumel, S., van Breemen, A., Gelinck, G., Peeters, B., Maas, J., Verbeek, R., Shanmugam, S., Akkerman, H., Meulenkamp, E., Huerdler, J.E., Acharya, M., Garca-Batlle, M., Almora, O., Guerrero, A., Garcia-Belmonte, G., Heiss, W., Schmidt, O., Tedde, S.F.: High-sensitivity high-resolution X-ray imaging with soft-sintered metal halide perovskites. Nat. Electron. 4(9), 681–688 (2021)
[5] [5] Kasap, S.O., Koughia, K.V., Fogal, B., Belev, G., Johanson, R.E.: The influence of deposition conditions and alloying on the electronic properties of amorphous selenium. Semiconductors 37(7), 789–794 (2003)
[6] [6] Greiffenberg, D., Fauler, A., Zwerger, A., Fiederle, M.: Energy resolution and transport properties of CdTe-timepix-assemblies. J. Instrum. Instrum. 6(1), 01058 (2011)
[7] [7] Pang, J., Zhao, S., Du, X., Wu, H., Niu, G., Tang, J.: Vertical matrix perovskite X-ray detector for effective multi-energy discrimination. Light Sci. Appl. 11(1), 105 (2022)
[8] [8] Pang, J., Wu, H., Li, H., Jin, T., Tang, J., Niu, G.: Reconfigurable perovskite X-ray detector for intelligent imaging. Nat. Commun. Commun. 15(1), 1769 (2024)
[9] [9] He, Y., Hadar, I., Kanatzidis, M.G.: Detecting ionizing radiation using halide perovskite semiconductors processed through solution and alternative methods. Nat. Photonics 16(1), 14–26 (2022)
[10] [10] Liu, Y., Zhang, Y., Zhu, X., Feng, J., Spanopoulos, I., Ke, W., He, Y., Ren, X., Yang, Z., Xiao, F., Zhao, K., Kanatzidis, M., Liu, S.F.: Triple-cation and mixed-halide perovskite single crystal for high-performance X-ray imaging. Adv. Mater. 33(8), 2006010 (2021)
[11] [11] Jin, P., Tang, Y., Li, D., Wang, Y., Ran, P., Zhou, C., Yuan, Y., Zhu, W., Liu, T., Liang, K., Kuang, C., Liu, X., Zhu, B., Yang, Y.M.: Realizing nearly- zero dark current and ultrahigh signal-to-noise ratio perovskite X-ray detector and image array by dark-current-shunting strategy. Nat. Commun. Commun. 14(1), 626 (2023)
[12] [12] Song, Z., Du, X., He, X., Wang, H., Liu, Z., Wu, H., Luo, H., Jin, L., Xu, L., Zheng, Z., Niu, G., Tang, J.: Rheological engineering of perovskite suspension toward high-resolution X-ray flat-panel detector. Nat. Commun. Commun. 14(1), 6865 (2023)
Get Citation
Copy Citation Text
Song Zihao, Wang Gaozhu, Pang Jincong, Zheng Zhiping, Xu Ling, Zhou Ying, Niu Guangda, Tang Jiang. Quantitative modeling of perovskite-based direct X-ray flat panel detectors[J]. Frontiers of Optoelectronics, 2024, 17(4): 32
Category: LETTER
Received: Jul. 9, 2024
Accepted: Feb. 28, 2025
Published Online: Feb. 28, 2025
The Author Email: