Journal of Synthetic Crystals, Volume. 53, Issue 3, 395(2024)
Conductive Domain Wall and Its Applications in Lithium Niobate
[1] [1] GOPALAN V, DIEROLF V, SCRYMGEOUR D A. Defect-domain wall interactions in trigonal ferroelectrics[J]. Annual Review of Materials Research, 2007, 37: 449-489.
[2] [2] MCGILLY L J, YUDIN P, FEIGL L, et al. Controlling domain wall motion in ferroelectric thin films[J]. Nature Nanotechnology, 2015, 10: 145-150.
[3] [3] MCQUAID R G P, CAMPBELL M P, WHATMORE R W, et al. Injection and controlled motion of conducting domain walls in improper ferroelectric Cu-Cl boracite[J]. Nature Communications, 2017, 8: 15105.
[4] [4] ESIN A A, AKHMATKHANOV A R, SHUR V Y. Superfast domain wall motion in lithium niobate single crystals. Analogy with crystal growth[J]. Applied Physics Letters, 2019, 114(19): 192902.
[5] [5] ELISEEV E A, MOROZOVSKA A N, SVECHNIKOV G S, et al. Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors[J]. Physical Review B, 2011, 83(23): 235313.
[6] [6] YANG S Y, SEIDEL J, BYRNES S J, et al. Above-bandgap voltages from ferroelectric photovoltaic devices[J]. Nature Nanotechnology, 2010, 5: 143-147.
[7] [7] STEFANI C, PONET L, SHAPOVALOV K, et al. Mechanical softness of ferroelectric 180° domain walls[J]. Physical Review X, 2020, 10(4): 041001.
[8] [8] GENG Y N, LEE N, CHOI Y J, et al. Collective magnetism at multiferroic vortex domain walls[J]. Nano Letters, 2012, 12(12): 6055-6059.
[9] [9] JURASCHEK D M, MEIER Q N, TRASSIN M, et al. Dynamical magnetic field accompanying the motion of ferroelectric domain walls[J]. Physical Review Letters, 2019, 123(12): 127601.
[10] [10] SCHRDER M, HAUMANN A, THIESSEN A, et al. Conducting domain walls in lithium niobate single crystals[J]. Advanced Functional Materials, 2012, 22(18): 3936-3944.
[11] [11] GODAU C, KMPFE T, THIESSEN A, et al. Enhancing the domain wall conductivity in lithium niobate single crystals[J]. ACS Nano, 2017, 11(5): 4816-4824.
[12] [12] SEIDEL J, MARTIN L W, HE Q, et al. Conduction at domain walls in oxide multiferroics[J]. Nature Materials, 2009, 8: 229-234.
[13] [13] FAROKHIPOOR S, NOHEDA B. Conduction through 71° domain walls in BiFeO3 thin films[J]. Physical Review Letters, 2011, 107(12): 127601.
[14] [14] MAKSYMOVYCH P, SEIDEL J, CHU Y H, et al. Dynamic conductivity of ferroelectric domain walls in BiFeO3[J]. Nano Letters, 2011, 11(5): 1906-1912.
[15] [15] GUYONNET J, GAPONENKO I, GARIGLIO S, et al. Conduction at domain walls in insulating Pb(Zr0.2Ti0.8)O3 thin films[J]. Advanced Materials, 2011, 23(45): 5377-5382.
[16] [16] MAKSYMOVYCH P, MOROZOVSKA A N, YU P, et al. Tunable metallic conductance in ferroelectric nanodomains[J]. Nano Letters, 2012, 12(1): 209-213.
[17] [17] MEIER D, SEIDEL J, CANO A, et al. Anisotropic conductance at improper ferroelectric domain walls[J]. Nature Materials, 2012, 11: 284-288.
[18] [18] SLUKA T, TAGANTSEV A K, BEDNYAKOV P, et al. Free-electron gas at charged domain walls in insulating BaTiO3[J]. Nature Communications, 2013, 4: 1808.
[19] [19] LINDGREN G, CANALIAS C. Domain wall conductivity in KTiOPO4 crystals[J]. APL Materials, 2017, 5(7): 076108.
[20] [20] LINDGREN G, CANALIAS C. Conductive atomic force microscopy studies of charged domain walls in KTiOPO4[J]. AIP Advances, 2018, 8(8): 085214.
[21] [21] LINDGREN G, KALININ S V, VASUDEVAN R K, et al. Polarization-dependent local conductivity and activation energy in KTiOPO4[J]. Applied Physics Letters, 2019, 114(19): 192901.
[22] [22] JIA C L, MI S B, URBAN K, et al. Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films[J]. Nature Materials, 2008, 7: 57-61.
[23] [23] CHIU Y P, CHEN Y T, HUANG B C, et al. Atomic-scale evolution of local electronic structure across multiferroic domain walls[J]. Advanced Materials, 2011, 23(13): 1530-1534.
[24] [24] GONNISSEN J, BATUK D, NATAF G F, et al. Direct observation of ferroelectric domain walls in LiNbO3: wall-meanders, kinks, and local electric charges[J]. Advanced Functional Materials, 2016, 26(42): 7599-7604.
[25] [25] SHARMA P, ZHANG Q, SANDO D, et al. Nonvolatile ferroelectric domain wall memory[J]. Science Advances, 2017, 3(6): e1700512.
[26] [26] JIANG J, BAI Z L, CHEN Z H, et al. Temporary formation of highly conducting domain walls for non-destructive read-out of ferroelectric domain-wall resistance switching memories[J]. Nature Materials, 2018, 17: 49-56.
[27] [27] LIU Z R, WANG H, LI M, et al. In-plane charged domain walls with memristive behaviour in a ferroelectric film[J]. Nature, 2023, 613: 656-661.
[28] [28] WANG J, MA J, HUANG H B, et al. Ferroelectric domain-wall logic units[J]. Nature Communications, 2022, 13: 3255.
[29] [29] BA H, PARUCH P. A way forward along domain walls[J]. Nature Materials, 2009, 8: 168-169.
[30] [30] WEMPLE S H, DIDOMENICO M Jr, CAMLIBEL I. Relationship between linear and quadratic electro-optic coefficients in LiNbO3, LiTaO3, and other oxygen-octahedra ferroelectrics based on direct measurement of spontaneous polarization[J]. Applied Physics Letters, 1968, 12(6): 209-211.
[31] [31] WEIS R S, GAYLORD T K. Lithium niobate: summary of physical properties and crystal structure[J]. Applied Physics A, 1985, 37(4): 191-203.
[32] [32] BOYD G D, MILLER R C, NASSAU K, et al. LiNbO3: an efficient phase matchable nonlinear optical material[J]. Applied Physics Letters, 1964, 5(11): 234-236.
[33] [33] GAO B F, REN M X, ZHENG D H, et al. Long-lived lithium niobate: history and progress[J]. Journal of Synthetic Crystals, 2021, 50(7): 1183-1199 (in Chinese).
[34] [34] HE M B, XU M Y, REN Y X, et al. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond[J]. Nature Photonics, 2019, 13: 359-364.
[35] [35] WANG C, LANGROCK C, MARANDI A, et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides[J]. Optica, 2018, 5(11): 1438.
[36] [36] LIN J T, YAO N, HAO Z Z, et al. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator[J]. Physical Review Letters, 2019, 122(17): 173903.
[37] [37] LU J J, AL SAYEM A, GONG Z, et al. Ultralow-threshold thin-film lithium niobate optical parametric oscillator[J]. Optica, 2021, 8(4): 539.
[38] [38] CAI L T, MAHMOUD A, KHAN M, et al. Acousto-optical modulation of thin film lithium niobate waveguide devices[J]. Photonics Research, 2019, 7(9): 1003.
[39] [39] LUO Q, BO F, KONG Y F, et al. Advances in lithium niobate thin-film lasers and amplifiers: a review[J]. Advanced Photonics, 2023, 5(3): 034002.
[40] [40] GUO Q S, SEKINE R, LEDEZMA L, et al. Femtojoule femtosecond all-optical switching in lithium niobate nanophotonics[J]. Nature Photonics, 2022, 16: 625-631.
[41] [41] ZHANG Y Q, LUO Q, ZHENG D H, et al. Highly efficient on-chip erbium-ytterbium Co-doped lithium niobate waveguide amplifiers[J]. Photonics Research, 2023, 11(10): 1733.
[42] [42] ZHANG M, BUSCAINO B, WANG C, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator[J]. Nature, 2019, 568: 373-377.
[43] [43] YANG C, YANG S, DU F, et al. 1550-nm band soliton microcombs in ytterbium-doped lithium-niobate microrings[J]. Laser & Photonics Reviews, 2023, 17(9): 2200510.
[44] [44] XIN F F, ZHAI Z H, WANG X J, et al. Threshold behavior of the Einstein oscillator, electron-phonon interaction, band-edge absorption, and small hole polarons in LiNbO3∶Mg crystals[J]. Physical Review B, 2012, 86(16): 165132.
[45] [45] STAEBLER D L, AMODEI J J. Thermally fixed holograms in LiNbO3[J]. IEEE Transactions on Sonics and Ultrasonics, 1972, 19(2): 107-114.
[46] [46] WONG K K. Properties of lithium niobate[M]. London: The Institution of Electrical Engineers, 2002.
[47] [47] KIRBUS B, GODAU C, WEHMEIER L, et al. Real-time 3D imaging of nanoscale ferroelectric domain wall dynamics in lithium niobate single crystals under electric stimuli: implications for domain-wall-based nanoelectronic devices[J]. ACS Applied Nano Materials, 2019, 2(9): 5787-5794.
[48] [48] MCCONVILLE J P V, LU H D, WANG B, et al. Ferroelectric domain wall memristor[J]. Advanced Functional Materials, 2020, 30(28): 2000109.
[49] [49] SUNA A, MCCLUSKEY C J, MAGUIRE J R, et al. Tuning local conductance to enable demonstrator ferroelectric domain wall diodes and logic gates[J]. Advanced Physics Research, 2023, 2(5): 2200095.
[50] [50] CHAI X J, JIANG J, ZHANG Q H, et al. Nonvolatile ferroelectric field-effect transistors[J]. Nature Communications, 2020, 11: 2811.
[51] [51] QIAN Y Z, ZHANG Y C, XU J J, et al. Domain-wall p-n junction in lithium niobate thin film on an insulator[J]. Physical Review Applied, 2022, 17(4): 044011.
[52] [52] VUL B M, GURO G M, IVANCHIK I I. Encountering domains in ferroelectrics[J]. Ferroelectrics, 1973, 6(1): 29-31.
[53] [53] ZHANG Y, LU H D, YAN X X, et al. Intrinsic conductance of domain walls in BiFeO3[J]. Advanced Materials, 2019, 31(36): e1902099.
[54] [54] MUNDY J A, SCHAAB J, KUMAGAI Y, et al. Functional electronic inversion layers at ferroelectric domain walls[J]. Nature Materials, 2017, 16: 622-627.
[55] [55] ROJAC T, BENCAN A, DRAZIC G, et al. Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects[J]. Nature Materials, 2017, 16: 322-327.
[56] [56] MEIER D, SELBACH S M. Ferroelectric domain walls for nanotechnology[J]. Nature Reviews Materials, 2022, 7: 157-173.
[57] [57] KONG Y F, XU J J, ZHANG G Y, et al. Multifunctional optoelectronic material: lithium niobate crystal[M]. Beijing: Science Press, 2005 (in Chinese).
[58] [58] STONE G, LEE D, XU H X, et al. Local probing of the interaction between intrinsic defects and ferroelectric domain walls in lithium niobate[J]. Applied Physics Letters, 2013, 102(4): 042905.
[59] [59] NATAF G F, AKTAS O, GRANZOW T, et al. Influence of defects and domain walls on dielectric and mechanical resonances in LiNbO3[J]. Journal of Physics Condensed Matter: an Institute of Physics Journal, 2016, 28(1): 015901.
[60] [60] MILLER G D, BYER R L. Periodically poled lithium niobate: modeling, fabrication, and nonlinear-optical performance[M]. Stanford: Stanford University, 1998.
[61] [61] SHUR V Y, AKHMATKHANOV A R, BATURIN I S. Micro- and nano-domain engineering in lithium niobate[J]. Applied Physics Reviews, 2015, 2(4): 040604.
[62] [62] FUJIMURA M, SOHMURA T, SUHARA T. Fabrication of domain-inverted gratings in MgO∶LiNbO3 by applying voltage under ultraviolet irradiation through photomask at room temperature[J]. Electronics Letters, 2003, 39(9): 719.
[63] [63] WANG W J, KONG Y F, LIU H D, et al. Light-induced domain reversal in doped lithium niobate crystals[J]. Journal of Applied Physics, 2009, 105(4): 043105.
[64] [64] VALDIVIA C E, SONES C L, SCOTT J G, et al. Nanoscale surface domain formation on the +z face of lithium niobate by pulsed ultraviolet laser illumination[J]. Applied Physics Letters, 2005, 86(2): 022906.
[65] [65] MUIR A C, SONES C L, MAILIS S, et al. Direct-writing of inverted domains in lithium niobate using a continuous wave ultra violet laser[J]. Optics Express, 2008, 16(4): 2336-2350.
[66] [66] SHUR V Y, KUZNETSOV D K, MINGALIEV E A, et al. In situ investigation of formation of self-assembled nanodomain structure in lithium niobate after pulse laser irradiation[J]. Applied Physics Letters, 2011, 99(8): 082901.
[67] [67] LILIENBLUM M, SOERGEL E. Anomalous domain inversion in LiNbO3 single crystals investigated by scanning probe microscopy[J]. Journal of Applied Physics, 2011, 110(5): 052018.
[68] [68] SHUR V Y, CHEZGANOV D S, SMIRNOV M M, et al. Domain switching by electron beam irradiation of Z+-polar surface in Mg-doped lithium niobate[J]. Applied Physics Letters, 2014, 105(5): 052908.
[69] [69] CHEZGANOV D S, SHUR V Y, VLASOV E O, et al. Influence of the artificial surface dielectric layer on domain patterning by ion beam in MgO-doped lithium niobate single crystals[J]. Applied Physics Letters, 2017, 110(8): 082903.
[70] [70] KOKHANCHIK L S, EMELIN E V, SIROTKIN V V. Morphology features of ferroelectric submicron domains written by E-beam under a metal film in LiNbO3[J]. Coatings, 2022, 12(12): 1881.
[71] [71] IEVLEV A V, JESSE S, MOROZOVSKA A N, et al. Intermittency, quasiperiodicity and chaos in probe-induced ferroelectric domain switching[J]. Nature Physics, 2014, 10: 59-66.
[72] [72] GAINUTDINOV R V, VOLK T R, ZHANG H H. Domain formation and polarization reversal under atomic force microscopy-tip voltages in ion-sliced LiNbO3 films on SiO2/LiNbO3 substrates[J]. Applied Physics Letters, 2015, 107(16): 162903.
[73] [73] IEVLEV A V, ALIKIN D O, MOROZOVSKA A N, et al. Symmetry breaking and electrical frustration during tip-induced polarization switching in the nonpolar cut of lithium niobate single crystals[J]. ACS Nano, 2015, 9(1): 769-777.
[74] [74] JIAO Y J, SHAO Z, LI S B, et al. Improvement on thermal stability of nano-domains in lithium niobate thin films[J]. Crystals, 2020, 10(2): 74.
[75] [75] SLAUTIN B N, ZHU H, SHUR V Y. Submicron periodical poling in Z-cut lithium niobate thin films[J]. Ferroelectrics, 2021, 576(1): 119-128.
[76] [76] QIAN Y Z, ZHANG Z Q, LIU Y Z, et al. Graphical direct writing of macroscale domain structures with nanoscale spatial resolution in nonpolar-cut lithium niobate on insulators[J]. Physical Review Applied, 2022, 17(5): 054049.
[77] [77] XU X Y, WANG T X, CHEN P C, et al. Femtosecond laser writing of lithium niobate ferroelectric nanodomains[J]. Nature, 2022, 609: 496-501.
[78] [78] SUN J, HAO Y X, ZHANG L, et al. Brief review of lithium niobate crystal and its applications[J]. Journal of Synthetic Crystals, 2020, 49(6): 947-964 (in Chinese).
[79] [79] KURODA A, KURIMURA S, UESU Y. Domain inversion in ferroelectric MgO∶LiNbO3 by applying electric fields[J]. Applied Physics Letters, 1996, 69(11): 1565-1567.
[80] [80] NERADOVSKAIA E A, NERADOVSKIY M M, ESIN A A, et al. Forward domain growth in 36° Y-cut congruent lithium niobate[J]. Ferroelectrics, 2019, 541(1): 115-122.
[81] [81] STANICKI B J, YOUNESI M, LCHNER F J F, et al. Surface domain engineering in lithium niobate[J]. OSA Continuum, 2020, 3(2): 345.
[82] [82] ZHANG Y C, QIAN Y Z, JIAO Y J, et al. Conductive domain walls in x-cut lithium niobate crystals[J]. Journal of Applied Physics, 2022, 132(4): 044102.
[83] [83] ESIN A A, AKHMATKHANOV A R, SHUR V Y. Tilt control of the charged domain walls in lithium niobate[J]. Applied Physics Letters, 2019, 114(9): 092901.
[84] [84] BINNIG G, QUATE C F, GERBER C. Atomic force microscope[J]. Physical Review Letters, 1986, 56(9): 930-933.
[85] [85] VOLK T, GAINUTDINOV R, ZHANG H H. Domain patterning in ion-sliced LiNbO3 films by atomic force microscopy[J]. Crystals, 2017, 7(5): 137.
[86] [86] QIAO X J, GENG W P, ZHENG D W, et al. Domain modulation in LiNbO3 films using litho piezoresponse force microscopy[J]. Nanotechnology, 2021, 32(14): 145713.
[87] [87] SLAUTIN B N, TURYGIN A P, GRESHNYAKOV E D, et al. Domain structure formation by local switching in the ion sliced lithium niobate thin films[J]. Applied Physics Letters, 2020, 116(15): 152904.
[88] [88] CHAUDHARY P, LU H, LIPATOV A, et al. Low-voltage domain-wall LiNbO3 memristors[J]. Nano Letters, 2020, 20(8): 5873-5878.
[89] [89] VOLK T R, GAINUTDINOV R V, ZHANG H H. Domain-wall conduction in AFM-written domain patterns in ion-sliced LiNbO3 films[J]. Applied Physics Letters, 2017, 110(13): 132905.
[90] [90] LU H D, TAN Y Z, MCCONVILLE J P V, et al. Electrical tunability of domain wall conductivity in LiNbO3 thin films[J]. Advanced Materials, 2019, 31(48): e1902890.
[91] [91] KALININ S V, RODRIGUEZ B J, JESSE S, et al. Vector piezoresponse force microscopy[J]. Microscopy and Microanalysis, 2006, 12(3): 206-220.
[92] [92] KMPFE T, REICHENBACH P, SCHRDER M, et al. Optical three-dimensional profiling of charged domain walls in ferroelectrics by Cherenkov second-harmonic generation[J]. Physical Review B, 2014, 89(3): 035314.
[93] [93] XIAO S Y, KMPFE T, JIN Y M, et al. Dipole-tunneling model from asymmetric domain-wall conductivity in LiNbO3 single crystals[J]. Physical Review Applied, 2018, 10(3): 034002.
[94] [94] SHENG Y, BEST A, BUTT H J, et al. Three-dimensional ferroelectric domain visualization by Cˇerenkov-type second harmonic generation[J]. Optics Express, 2010, 18(16): 16539-16545.
[95] [95] WERNER C S, HERR S J, BUSE K, et al. Large and accessible conductivity of charged domain walls in lithium niobate[J]. Scientific Reports, 2017, 7: 9862.
[96] [96] POBERAJ G, HU H, SOHLER W, et al. Lithium niobate on insulator (LNOI) for micro-photonic devices[J]. Laser & Photonics Reviews, 2012, 6(4): 488-503.
[97] [97] YANG D R. Testing and analysis of semiconductor materials[M]. Beijing: Science Press, 2010 (in Chinese).
[98] [98] OHMORI Y, YAMAGUCHI M, YOSHINO K, et al. Electron hall mobility in reduced LiNbO3[J]. Japanese Journal of Applied Physics, 1976, 15(11): 2263-2264.
[99] [99] LIAN J W, CHAI X J, WANG C, et al. Sub 20 nm-node LiNbO3 domain-wall memory[J]. Advanced Materials Technologies, 2021, 6(7): 2001219.
[100] [100] SUN J, LI Y M, ZHANG B Y, et al. High-power LiNbO3 domain-wall nanodevices[J]. ACS Applied Materials & Interfaces, 2023, 15(6): 8691-8698.
Get Citation
Copy Citation Text
ZHANG Yuchen, LI Sanbing, XU Jingjun, ZHANG Guoquan. Conductive Domain Wall and Its Applications in Lithium Niobate[J]. Journal of Synthetic Crystals, 2024, 53(3): 395
Category:
Received: Jan. 7, 2024
Accepted: --
Published Online: Jul. 30, 2024
The Author Email: Guoquan ZHANG (zhanggq@nankai.edu.cn)
CSTR:32186.14.