Acta Optica Sinica, Volume. 44, Issue 13, 1315001(2024)

Method of Visible-Infrared Armored Vehicle Detection Based on Feature Alignment and Regional Image Quality Guided Fusion

Jie Zhang*, Tianqing Chang**, Libin Guo***, Bin Han, and Lei Zhang
Author Affiliations
  • Department of Weaponry and Control, Army Academy of Armored Forces, Beijing 100072, China
  • show less
    Figures & Tables(16)
    Overall structure of the proposed method
    Structure of FAM
    Structure of RIQGFM
    Feature fusion methods. (a) Feature summation; (b) feature concatenation
    Structure of middle feature fusion detection model
    Infrared feature visualization images before and after the FAM. (a) Input infrared image; (b) infrared feature visualization images before FAM processing; (c) infrared feature visualization images after FAM processing
    Heat maps of multiscale quality matrix. (a) Input image pair; (b) small scale quality matrix heat maps; (c) medium scale quality matrix heat maps; (d) large scale quality matrix heat maps
    Test results for different methods on partial test set. (a) No interference; (b) dust interference; (c) black smoke interference
    • Table 1. VTAV image dataset information

      View table

      Table 1. VTAV image dataset information

      Dataset nameNumber of image pairsNumber of armoured vehicles
      Training set486211633
      Test set11714245
      Total585315878
    • Table 2. Performance comparison between single-light image object detection method and dual-light image object detection method

      View table

      Table 2. Performance comparison between single-light image object detection method and dual-light image object detection method

      MethodInputmAP50 /%mAP /%
      YOLOv8-s-IRIR57.924.9
      YOLOv8-s-RGBRGB89.356.3
      YOLOv8-s-addRGB+IR91.857.1
      YOLOv8-s-concatRGB+IR91.757.2
    • Table 3. Effect of position shift on the performance of YOLOv8-s-add

      View table

      Table 3. Effect of position shift on the performance of YOLOv8-s-add

      Δy /pixelmAP /%
      Δx=-8 pixelΔx=-4 pixelΔx=-2 pixelΔx=0 pixelΔx=2 pixelΔx=4 pixelΔx=8 pixel
      -855.4(-1.7)55.6(-1.5)55.6(-1.5)55.6(-1.5)55.6(-1.5)55.6(-1.5)55.5(-1.6)
      -455.9(-1.2)56.2(-0.9)56.2(-0.9)56.2(-0.9)56.2(-0.9)56.2(-0.9)56.0(-1.1)
      -256.3(-0.8)56.7(-0.4)56.7(-0.4)56.8(-0.3)56.8(-0.3)56.6(-0.5)56.2(-0.9)
      056.5(-0.6)56.8(-0.3)57.0(-0.1)57.1(-0)57.0(-0.1)56.8(-0.3)56.2(-0.9)
      256.5(-0.6)56.8(-0.3)56.9(-0.2)56.8(-0.3)56.8(-0.3)56.7(-0.4)56.0(-1.1)
      456.1(-1.0)56.4(-0.7)56.5(-0.6)56.5(-0.6)56.4(-0.7)56.2(-0.9)55.8(-1.3)
      855.4(-1.7)55.5(-1.6)55.4(-1.7)55.5(-1.6)55.5(-1.6)55.5(-1.6)55.2(-1.9)
    • Table 4. Effect of position shift on the performance of YOLOv8-s-add+FAM

      View table

      Table 4. Effect of position shift on the performance of YOLOv8-s-add+FAM

      Δy /pixelmAP /%
      Δx=-8 pixelΔx=-4 pixelΔx=-2 pixelΔx=0 pixelΔx=2 pixelΔx=4 pixelΔx=8 pixel
      -856.6(-0.8)56.8(-0.6)56.8(-0.6)56.8(-0.6)56.9(-0.5)56.8(-0.6)56.8(-0.6)
      -457.0(-0.4)57.0(-0.4)57.0(-0.4)57.1(-0.3)57.1(-0.3)57.1(-0.3)57.0(-1.4)
      -257.1(-0.3)57.2(-0.2)57.2(-0.2)57.2(-0.2)57.3(-0.1)57.2(-0.2)57.1(-0.3)
      057.1(-0.3)57.3(-0.1)57.4(-0)57.4(-0)57.4(-0)57.3(-0.1)57.1(-0.3)
      257.2(-0.4)57.3(-0.1)57.3(-0.1)57.4(-0)57.3(-0.1)57.2(-0.2)57.1(-0.3)
      457.1(-0.3)57.3(-0.1)57.3(-0.1)57.3(-0.1)57.2(-0.2)57.2(-0.2)57.0(-0.4)
      856.9(-0.5)57.0(-0.4)57.0(-0.4)57.0(-0.4)57.0(-0.4)56.8(-0.6)56.8(-0.6)
    • Table 5. Performance comparison between YOLOv8-s-add+FAM and YOLOv8-s-add

      View table

      Table 5. Performance comparison between YOLOv8-s-add+FAM and YOLOv8-s-add

      Δy /pixelDifference of mAP /%
      Δx=-8 pixelΔx=-4 pixelΔx=-2 pixelΔx=0 pixelΔx=2 pixelΔx=4 pixelΔx=8 pixel
      -81.21.31.21.21.31.21.3
      -41.10.80.80.90.90.91.0
      -20.80.50.50.40.50.60.9
      00.60.50.30.30.40.50.9
      20.70.50.40.60.50.51.1
      41.00.90.80.80.81.01.2
      81.51.51.61.51.51.31.6
    • Table 6. Performance of the RIQGFM

      View table

      Table 6. Performance of the RIQGFM

      MethodInputRIQGFMmAP /%
      YOLOv8-s-addRGB+IR57.1
      YOLOv8-s-addRGB+IR57.8 (0.7)
      YOLOv8-s-concatRGB+IR57.2
      YOLOv8-s-concatRGB+IR57.8 (0.6)
      YOLOv8-s-add+FAMRGB+IR57.4
      YOLOv8-s-add+FAMRGB+IR58.2 (0.8)
      YOLOv8-s-concat+FAMRGB+IR57.4
      YOLOv8-s-concat+FAMRGB+IR58.2 (0.8)
    • Table 7. Performance comparison between the proposed method and the current advanced target detection methods

      View table

      Table 7. Performance comparison between the proposed method and the current advanced target detection methods

      MethodInputmAP50 /%mAP /%
      YOLOv5-nRGB87.654.9
      YOLOv5-sRGB88.356.2
      YOLOX-tinyRGB85.351.4
      YOLOX-sRGB89.755.6
      YOLOv7-tinyRGB92.355.8
      PPYOLOE + sRGB91.455.6
      Rtmdet-tinyRGB87.255.4
      YOLOv8-nRGB88.655.3
      YOLOv8-s-RGBRGB89.356.3
      YOLOv8-s-addRGB+IR91.857.1
      YOLOv8-s-concatRGB+IR91.757.2
      OursRGB+IR92.858.2
    • Table 8. Performance comparison between the proposed method and the dual-modal detection method

      View table

      Table 8. Performance comparison between the proposed method and the dual-modal detection method

      MethodInputmAP50 /%mAP75 /%mAP /%
      CFRRGB+IR72.4
      GAFFRGB+IR72.930.937.3
      CAPTMRGB+IR73.2
      CFTRGB+IR78.340.2
      ICAFusionRGB+IR79.236.941.1
      YOLOv8-s-addRGB+IR77.838.742.5
      YOLOv8-s-concatRGB+IR78.839.342.5
      OursRGB+IR79.141.143.6
    Tools

    Get Citation

    Copy Citation Text

    Jie Zhang, Tianqing Chang, Libin Guo, Bin Han, Lei Zhang. Method of Visible-Infrared Armored Vehicle Detection Based on Feature Alignment and Regional Image Quality Guided Fusion[J]. Acta Optica Sinica, 2024, 44(13): 1315001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Feb. 28, 2024

    Accepted: Mar. 24, 2024

    Published Online: Jul. 17, 2024

    The Author Email: Zhang Jie (zjwhy_8@163.com), Chang Tianqing (changtianqing@263.net), Guo Libin (binexe@126.com)

    DOI:10.3788/AOS240664

    CSTR:32393.14.AOS240664

    Topics