Journal of Advanced Dielectrics, Volume. 13, Issue 1, 2242008(2023)

Preparation of elastomeric nanocomposites using nanocellulose and recycled alum sludge for flexible dielectric materials

Dongyang Sun1, Bernard L. H. Saw2, Amaka J. Onyianta3, Bowen Wang4, Callum Wilson1, Dominic O’Rourke1, Chan H. See1, Carmen-Mihaela Popescu5, Mark Dorris1, Islam Shyha1, and Zhilun Lu1、*
Author Affiliations
  • 1School of Engineering and Built Environment, Edinburgh Napier University, Edinburgh, UK
  • 2Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman Kajang, Malaysia
  • 3Bristol Composites Institute, School of Civil, Aerospace and Mechanical Engineering, University of Bristol, University Walk, Bristol, BS8 1TR, UK
  • 4School of Engineering and Materials Science, Queen Mary University of London, London, UK
  • 5Petru Poni Institute of Macromolecular Chemistry of the Romanian Academy, Iasi, Romania
  • show less
    References(38)

    [1] T. Gupta, U. Kulshrestha, S. B. Ghosh. Green elastomeric nanocomposites for high-performance applications. Mater. Today, Proc., 28, 2494(2020).

    [2] V. Mittal, J. K. Kim, K. Pal. Recent1 Advances in Elastomeric Nanocomposites, 9(2011).

    [3] A. Thomas, J. Whittle. Tensile rupture of rubber. Rub. Chem. Technol., 43, 222(1970).

    [4] K. G. Nair, A. Dufresne. Crab shell chitin whisker reinforced natural rubber nanocomposites. 2. Mechanical behavior. Biomacromolecules, 4, 666(2003).

    [5] P. C. LeBaron, T. J. Pinnavaia. Clay nanolayer reinforcement of a silicone elastomer. Chem. Mater., 13, 3760(2001).

    [6] Y. Zhou et al. Lignocellulosic fibre mediated rubber composites: An overview. Compos. B, Eng., 76, 180(2015).

    [7] D. M. Updegraff. Semimicro determination of cellulose inbiological materials. Anal. Biochem., 32, 420(1969).

    [8] J. Roberts, L. M. Srivastava. Plant growth and development. Hormones and the environment. Ann. Bot., 92, 846(2003).

    [9] T. Istirokhatun et al. Cellulose isolation from tropical water hyacinth for membrane preparation. Procedia Environ. Sci., 23, 274(2015).

    [10] M. Mahardika et al. Production of nanocellulose from pineapple leaf fibers via high-shear homogenization and ultrasonication. Fibers, 6, 28(2018).

    [11] P. Phanthong et al. Nanocellulose: Extraction and application. Carbon Resour. Convers., 1, 32(2018).

    [12] N. M. M. Mitan. Water hyacinth: Potential and threat. Int. Conf. Chemical Sciences and Engineering (ICCSE) - Advance and New Materials, 19, 1408(2019).

    [13] C. C. Gunnarsson, C. M. Petersen. Water hyacinths as a resource in agriculture and energy production: A literature review. Waste Manage, 27, 117(2007).

    [14] L. Ceseracciu et al. Robust and biodegradable elastomers based on corn starch and polydimethylsiloxane (PDMS). ACS Appl. Mater. Interfaces, 7, 3742(2015).

    [15] S. Jang, J. H. Oh. Rapid fabrication of microporous BaTiO3/PDMS nanocomposites for triboelectric nanogenerators through one-step microwave irradiation. Sci. Rep., 8, 14287(2018).

    [16] X. L. Chen et al. The fabrication and application of a PDMS micro through-holes mask in electrochemical micromanufacturing. Adv. Mech. Eng., 6, 943092(2014).

    [17] F. P. Sales et al. Mechanical characterization of PDMS with different mixing ratios. Procedia Struct. Integr, 37, 383(2022).

    [18] P. Radanliev et al. Artificial intelligence and the internet of things in Industry 4.0. CCF Trans. Pervasive Comput. Interact., 3, 329(2021).

    [19] C. Xu et al. Portable and wearable self-powered systems based on emerging energy harvesting technology. Microsyst. Nanoeng., 7, 25(2021).

    [20] P. Düking et al. Comparison of non-invasive individual monitoring of the training and health of athletes with commercially available wearable technologies. Front. Physiol., 7, 71(2016).

    [21] S. F. Memon, M. Memon, S. Bhatti. Wearable technology for infant health monitoring: A survey. IET Circuits Devices Syst., 14, 115(2020).

    [22] Z. W. Lin et al. A personalized acoustic interface for wearable human-machine interaction. Adv. Funct. Mater., 32, 202109430(2022).

    [23] W. Xu et al. A stretchable solid-state zinc ion battery based on a cellulose nanofiber–polyacrylamide hydrogel electrolyte and a Mg0.23V2O5⋅1.0H2O cathode. J. Mater. Chem. A, 8, 18327(2020).

    [24] Y. Yin et al. Flexible cellulose/alumina (Al2O3) nanocomposite films with enhanced energy density and efficiency for dielectric capacitors. Cellulose, 28, 1541(2021).

    [25] P. Du, X. Lin, X. Zhang. Dielectric constants of PDMS nanocomposites using conducting polymer nanowires. 2011 16th Int. Solid-State Sensors, Actuators and Microsystems Conf, 645-648(2011).

    [26] P. Bertasius et al. Dielectric properties of polydimethylsiloxane composites filled with SrTiO3 nanoparticles. Polym. Compos., 42, 2982(2021).

    [27] A. O. Babatunde, Y. Q. Zhao. Constructive approaches toward water treatment works sludge management: An international review of beneficial reuses. Crit. Rev. Environ. Sci. Technol., 37, 129(2007).

    [28] K. B. Dassanayake et al. A review on alum sludge reuse with special reference to agricultural applications and future challenges. Waste Manage., 38, 321(2015).

    [29] D. Sun et al. A process for deriving high quality cellulose nanofibrils from water hyacinth invasive species. Cellulose, 27, 3727(2020).

    [30] W. Chen et al. Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose, 18, 433(2011).

    [31] M. Y. Soleha et al. Characterization of raw and thermally treated alum sludge. Key Eng. Mater., 701, 138(2016).

    [32] D. H. Bache, Y. Q. Zhao. Optimising polymer use in alum sludge conditioning: An ad hoc test. J. Water Supply, Res. Technol., AQUA, 50, 29(2001).

    [33] H. Owaid et al. Physical and mechanical properties of high performance concrete with alum sludge as partial cement replacement. Jurnal Teknologi, 65, 105(2013).

    [34] H. Awab, T. Paramalinggam, A. R. M. Yusoff. Characterization of alum sludge for reuse and disposal. Malays. J. Fund. Appl. Sci., 8, 209(2012).

    [35] M. N. Prabhakar et al. Hybrid approach to improve the flame-retardant and thermal properties of sustainable biocomposites used in outdoor engineering applications. Compos. A, Appl. Sci. Manuf., 152, 106674(2022).

    [36] L. Zhang, S. Olhero, J. M. F. Ferreira. Thermo-mechanical and high-temperature dielectric properties of cordierite-mullite-alumina ceramics. Ceram. Int., 42, 16897(2016).

    [37] M. D. Groner et al. Electrical characterization of thin Al2O3 films grown by atomic layer deposition on silicon and various metal substrates. Thin Solid Films, 413, 186(2002).

    [38] A. Khouaja, A. Koubaa, H. B. Daly. Dielectric properties and thermal stability of cellulose high-density polyethylene bio-based composites. Ind. Crops Prod., 171, 113928(2021).

    Tools

    Get Citation

    Copy Citation Text

    Dongyang Sun, Bernard L. H. Saw, Amaka J. Onyianta, Bowen Wang, Callum Wilson, Dominic O’Rourke, Chan H. See, Carmen-Mihaela Popescu, Mark Dorris, Islam Shyha, Zhilun Lu. Preparation of elastomeric nanocomposites using nanocellulose and recycled alum sludge for flexible dielectric materials[J]. Journal of Advanced Dielectrics, 2023, 13(1): 2242008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Sep. 28, 2022

    Accepted: Nov. 7, 2022

    Published Online: Mar. 20, 2023

    The Author Email: Zhilun Lu (z.lu@napier.ac.uk)

    DOI:10.1142/S2010135X22420085

    CSTR:32405.14.S2010135X22420085

    Topics