Acta Photonica Sinica, Volume. 53, Issue 5, 0553105(2024)
Advances in Organic Microcavity Lasers Based on Different Resonant Cavity Structures(Invited)
[1] MAIMAN T H. Stimulated optical radiation in ruby[J]. Nature, 187, 493-494(1960).
[2] NOVAKOV T, JACKSON M J, ROBINSON G M et al. Laser sintering of metallic medical materials—a review[J]. The International Journal of Advanced Manufacturing Technology, 93, 2723-2752(2017).
[3] ZHAO Jinyang, YAN Yongli, GAO Zhenhua et al. Full-color laser displays based on organic printed microlaser arrays[J]. Nature Communications, 10, 870(2019).
[4] ZHAN Xiuqin, XU Fafeng, ZHOU Zhonghao et al. 3D laser displays based on circularly polarized lasing from cholesteric liquid crystal arrays[J]. Advanced Materials, 33, e2104418(2021).
[5] EXTANCE A. Military technology: laser weapons get real[J]. Nature, 521, 408-410(2015).
[6] JABCZYNSKI J K, GONTAR P. Impact of atmospheric turbulence on coherent beam combining for laser weapon systems[J]. Defence Technology, 17, 1160-1167(2021).
[7] HAN Ronglei, SUN Jianfeng, HOU Peipei et al. Multi-dimensional and large-sized optical phased array for space laser communication[J]. Optics Express, 30, 5026-5037(2022).
[8] STANKOVA N, NIKOLOV A, IORDANOVA E et al. New approach toward laser-assisted modification of biocompatible polymers relevant to neural interfacing technologies[J]. Polymer International, 13, 3004(2021).
[9] LI Zhizhou, LIANG Feng, ZHUO Mingpeng et al. White-emissive self-assembled organic microcrystals[J]. Small, 13, 1604110(2017).
[10] WANG Xuedong, LIAO Qing, XU Zhenzhen et al. Exciton-polaritons with size-tunable coupling strengths in self-assembled organic microresonators[J]. ACS Photonics, 1, 413-420(2014).
[11] YANG Fangxu, CHENG Shanshan, ZHANG Xiaotao et al. 2D organic materials for optoelectronic applications[J]. Advanced Materials, 30, 1702415(2018).
[12] KUEHNE A J C, GATHER M C. Organic lasers: recent developments on materials, device geometries, and fabrication techniques[J]. Chemical Reviews, 116, 12823-12864(2016).
[13] MIZUNO H, HAKU U, MARUTAIN Y et al. Single crystals of 5,5'-bis(4'-methoxybiphenyl-4-yl)-2,2'-bithiophene for organic laser media[J]. Advanced Materials, 24, 5744-5749(2012).
[14] GIERSCHNER J, VARGHESE S, PARK S Y. Organic single crystal lasers: a materials view[J]. Advanced Optical Materials, 4, 348-364(2016).
[15] YU Zhenyi, WU Yishi, LIAO Qing et al. Self-assembled microdisk lasers of perylenediimides[J]. Journal of the American Chemical Society, 137, 15105-15111(2015).
[16] LIAO Qing, WANG Zhen, GAO Qinggang et al. The effect of 1D- and 2D-polymorphs on organic single-crystal optoelectronic devices: lasers and field effect transistors[J]. Journal of Materials Chemistry C, 6, 7994-8002(2018).
[17] ZONG Luyi, XIE Yujun, LI Qianqian et al. A new red fluorescent probe for Hg2+ based on naphthalene diimide and its application in living cells, reversibility on strip papers[J]. Sensors and Actuators B: Chemical, 238, 735-743(2017).
[18] GU Bobo, WU Wenbo, XU Gaixia et al. Precise two-photon photodynamic therapy using an efficient photosensitizer with aggregation-induced emission characteristics[J]. Advanced Materials, 29, 1701076(2017).
[19] JIN Xue, HUANG Han, WANG Xuedong et al. Control of molecular packing toward a lateral microresonator for microlaser array[J]. Journal of Materials Chemistry C, 8, 8531-8537(2020).
[20] JIA Jichao, CAO Xue, MA Xuekai et al. Circularly polarized electroluminescence from a single-crystal organic microcavity light-emitting diode based on photonic spin-orbit interactions[J]. Nature Communications, 14, 31(2023).
[21] LIU Dan, WU Xianxin, GAO Can et al. Integrating unexpected high charge-carrier mobility and low-threshold lasing action in an organic semiconductor[J]. Angewandte Chemie International Edition, 61, e202200791(2022).
[22] WONG M Y, ZYSMAN COLMAN E. Purely organic thermally activated delayed fluorescence materials for organic light-emitting diodes[J]. Advanced Materials, 29, 1605444(2017).
[23] IM Y, KIM M, CHO Y J et al. Molecular design strategy of organic thermally activated delayed fluorescence emitters[J]. Chemistry of Materials, 29, 1946-1963(2017).
[24] TSAI Weilung, HUANG Minghao, LEE Weikai et al. A versatile thermally activated delayed fluorescence emitter for both highly efficient doped and non-doped organic light emitting devices[J]. Chemical Communications, 51, 13662-13665(2015).
[25] WANG Shipan, YAN Xianju, CHENG Zong et al. Highly efficient near-infrared delayed fluorescence organic light emitting diodes using a phenanthrene-based charge-transfer compound[J]. Angewandte Chemie International Edition, 54, 13068-13072(2015).
[26] WANG Yanjie, ZHU Yunhui, LIN Xingdong et al. Efficient non-doped yellow OLEDs based on thermally activated delayed fluorescence conjugated polymers with an acridine/carbazole donor backbone and triphenyltriazine acceptor pendant[J]. Journal of Materials Chemistry C, 6, 568-574(2018).
[27] WANG Yanjie, ZHU Yunhui, XIE Guohua et al. Bright white electroluminescence from a single polymer containing a thermally activated delayed fluorescence unit and a solution-processed orange OLED approaching 20% external quantum efficiency[J]. Journal of Materials Chemistry C, 5, 10715-10720(2017).
[28] SHAO Shiyang, HU Jun, WANG Xingdong et al. Blue thermally activated delayed fluorescence polymers with nonconjugated backbone and through-space charge transfer effect[J]. Journal of the American Chemical Society, 139, 17739-17742(2017).
[29] LEE S Y, YASUDA T, KOMIYAMA H et al. Thermally activated delayed fluorescence polymers for efficient solution-processed organic light-emitting diodes[J]. Advanced Materials, 28, 4019-4024(2016).
[30] LUO Jiajia, GONG Shaolong, GU Yu et al. Multi-carbazole encapsulation as a simple strategy for the construction of solution-processed, non-doped thermally activated delayed fluorescence emitters[J]. Journal of Materials Chemistry C, 4, 2442-2446(2016).
[31] BAN Xinxin, JIANG Wei, LU Tingting et al. Self-host thermally activated delayed fluorescent dendrimers with flexible chains: an effective strategy for non-doped electroluminescent devices based on solution processing[J]. Journal of Materials Chemistry C, 4, 8810-8816(2016).
[32] ALBRECHT K, MATSUOKA K, FUJITA K et al. Carbazole dendrimers as solution-processable thermally activated delayed-fluorescence materials[J]. Angewandte Chemie International Edition, 54, 5677-5682(2015).
[33] XIA Debin, WANG Bin, CHEN Bo et al. Self-host blue-emitting iridium dendrimer with carbazole dendrons: nondoped phosphorescent organic light-emitting diodes[J]. Angewandte Chemie International Edition, 53, 1048-1052(2014).
[34] KIM D H, D'ALEO A, CHEN XianKai et al. High-efficiency electroluminescence and amplified spontaneous emission from a thermally activated delayed fluorescent near-infrared emitter[J]. Nature Photonics, 12, 98-104(2018).
[35] HUANG Han, YU Zhenyi, ZHOU Dandan et al. Wavelength-turnable organic microring laser arrays from thermally activated delayed fluorescent emitters[J]. ACS Photonics, 6, 3208-3214(2019).
[36] ZHOU Zhonghao, QIAO Chan, WANG Kang et al. Experimentally observed reverse intersystem crossing-boosted lasing[J]. Angewandte Chemie International Edition, 59, 21677-21682(2020).
[37] LI Yuan, WANG Kai, LIAO Qing et al. Tunable triplet-mediated multicolor lasing from nondoped organic TADF microcrystals[J]. Nano Letters, 21, 3287-3294(2021).
[38] ZHU Jinlong, LIAO Qing, HUANG Han et al. J-aggregation enhanced thermally activated delayed fluorescence for amplified spontaneous emission[J]. Cell Reports Physical Science, 3, 100686(2022).
[39] LI Shuai, CHEN Jingyao, WEI Yuling et al. An organic laser based on thermally activated delayed fluorescence with aggregation-induced emission and local excited state characteristics[J]. Angewandte Chemie International Edition, 61, e202209211(2022).
[40] GONG Hao, SONG Yixing, HE Jingping et al. Switching from thermally activated delayed fluorescence in single crystals for low-threshold laser to room-temperature phosphorescence in amorphous-film for highly efficient OLEDs[J]. Angewandte Chemie International Edition, e202400089(2024).
[41] CHEN Jianwei, CHEN Yi, WU Yishi et al. Modulated emission from dark triplet excitons in aza-acene compounds: fluorescence versus phosphorescence[J]. New Journal of Chemistry, 41, 1864-1871(2017).
[42] XU Jinjia, TAKAI A, KOBAYASHI Y et al. Phosphorescence from a pure organic fluorene derivative in solution at room temperature[J]. Chemical Communications, 49, 8447-8449(2013).
[43] YU Zhenyi, WU Yishi, XIAO Lu et al. Organic phosphorescence nanowire lasers[J]. Journal of the American Chemical Society, 139, 6376-6381(2017).
[44] ZU Guo, LI Shuai, HE Jingping et al. Amplified spontaneous emission from organic phosphorescence emitters[J]. The Journal of Physical Chemistry Letters, 13, 5461-5467(2022).
[45] Yongyu CHA, LI Shuai, FENG Zuofang et al. Organic phosphorescence lasing based on a thermally activated delayed fluorescence emitter[J]. The Journal of Physical Chemistry Letters, 13, 10424-10431(2022).
[46] WEI Guoqing, TAO Yichen, WU Junjie et al. Low-threshold organic lasers based on single-crystalline microribbons of aggregation-induced emission luminogens[J]. The Journal of Physical Chemistry Letters, 10, 679-684(2019).
[47] ZHUO Zhiqiang, WEI Chuanxin, NI Mingjian et al. Organic molecular crystal with a high ultra-deep-blue emission efficiency of ∼85% for low-threshold laser[J]. Dyes and Pigments, 204, 110425(2022).
[48] DONG Haiyun, ZHANG Chunhuan, LIU Yuan et al. Organic microcrystal vibronic lasers with full-spectrum tunable output beyond the franck-condon principle[J]. Angewandte Chemie International Edition, 57, 3108-3112(2018).
[49] YIN Fan, DE Jianbo, HUANG Han et al. Molecular engineering of excited-state process for multicolor microcrystalline lasers[J]. Journal of Materials Chemistry C, 10, 4166-4172(2022).
[50] WEI Guoqing, YU Yue, ZHUO Mingpeng et al. Organic single-crystalline whispering-gallery mode microlasers with efficient optical gain activated via excited state intramolecular proton transfer luminogens[J]. Journal of Materials Chemistry C, 8, 11916-11921(2020).
[51] KOGELNIK H, SHANK C V. Coupled-wave theory of distributed feedback lasers[J]. Journal of Applied Physics, 43, 2327-2335(1972).
[52] SAMUEL I D W, TURNBULL G A. Organic Semiconductor Lasers[J]. Chemical Reviews, 38, 1272-1295(2007).
[53] TURNBULL G A, ANDREW P, BARNES W L et al. Photonic mode dispersion of a two-dimensional distributed feedback polymer laser[J]. Physical Review B, 67, 165107(2003).
[54] TURNBULL G A, ANDREW P, JORY M J et al. Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser[J]. Physical Review B, 64, 125122(2001).
[55] SANDANAYAKA A S D, MATSUSHIMA T, BENCHEIKH F et al. Indication of current-injection lasing from an organic semiconductor[J]. Applied Physics Express, 12, 061010(2019).
[56] SENEVIRATHNE C A M, SANDANAYAKA A S D, KARUNATHILAKA B S B et al. Markedly improved performance of optically pumped organic lasers with two-dimensional distributed-feedback gratings[J]. ACS Photonics, 8, 1324-1334(2021).
[57] SAITOH T, KUMAGAI M, WANG Hailong et al. Highly reflective distributed Bragg reflectors using a deeply etched semiconductor/air grating for InGaN/GaN laser diodes[J]. Applied Physics Letters, 82, 4426-4428(2003).
[58] TIAN Cheng, ZHAO Shiqi, GUO Tong et al. Deep-blue DBR laser at room temperature from single-crystalline perovskite thin film[J]. Optical Materials, 107, 110130(2020).
[59] HU Yongsheng, LIN Jie, SONG Li et al. Vertical microcavity organic light-emitting field-effect transistors[J]. Scientific Reports, 6, 23210(2016).
[60] GONG Qiaoxia, ZHANG Wenbo, HE Jiuru et al. Simultaneously improving the quality factor and outcoupling efficiency of organic light-emitting field-effect transistors with planar microcavity[J]. Optics Express, 31, 2480-2491(2023).
[61] HOU Jue, LI Mingzhu, SONG Yanlin. Recent advances in colloidal photonic crystal sensors: materials, structures and analysis methods[J]. Nano Today, 22, 132-144(2018).
[62] ZHOU Weidong[M]. On-chip photonic crystal surface-emitting lasers,Semiconductors and Semimetals, 189-225(2019).
[63] ZHOU Weidong, ZHAO Deyin, SHUAI Yichen et al. Progress in 2D photonic crystal Fano resonance photonics[J]. Progress in Quantum Electronics, 38, 1-74(2014).
[64] KWON S H, RYU H Y, KIM G H et al. Photonic bandedge lasers in two-dimensional square-lattice photonic crystal slabs[J]. Applied Physics Letters, 83, 3870-3872(2003).
[65] LU Huanyu, TIAN Sicong, TONG Cunzhu et al. Extracting more light for vertical emission: high power continuous wave operation of 1.3-μm quantum-dot photonic-crystal surface-emitting laser based on a flat band[J]. Light: Science & Applications, 8, 108(2019).
[66] NODA S, KITAMURA K, OKINO T et al. Photonic-crystal surface-emitting lasers: Review and introduction of modulated-photonic crystals[J]. IEEE Journal of Selected Topics in Quantum Electronics, 23, 1-7(2017).
[67] HUANG Yaoran, ZHOU Taojie, TANG Mingchu et al. Highly integrated photonic crystal bandedge lasers monolithically grown on Si substrates[J]. Chinese Optics Letters, 20, 041401(2022).
[68] HITAKA M, HIROSE K, SUGIYAMA T et al. 1.5 µm wavelength NPN-type photonic-crystal surface-emitting laser exceeding 100 mW[J]. Optics Express, 31, 18645-18653(2023).
[69] DIETRICH C P, STEUDE A, TROPF L et al. An exciton-polariton laser based on biologically produced fluorescent protein[J]. Science Advances, 2, e1600666(2016).
[70] HU Yongsheng, BENCHEIKH F, CHENAIS S et al. High performance planar microcavity organic semiconductor lasers based on thermally evaporated top distributed Bragg reflector[J]. Applied Physics Letters, 117, 153301(2020).
[71] ZHANG Hongbo, HU Yuzhong, WEN Wen et al. Room-temperature continuous-wave vertical-cavity surface-emitting lasers based on 2D layered organic-inorganic hybrid perovskites[J]. APL Materials, 9, 071106(2021).
[72] SCHNEIDER C, RAHIMI-IMAN A, KIM N Y et al. An electrically pumped polariton laser[J]. Nature, 497, 348-352(2013).
[73] IMAMOG A, RAM R J, PAU S et al. Nonequilibrium condensates and lasers without inversion: exciton-polariton lasers[J]. Physical Review A, 53, 4250(1996).
[74] DANG L S, HEGER D, ANDRE R et al. Stimulation of polariton photoluminescence in semiconductor microcavity[J]. Physical Review Letters, 81, 3920(1998).
[75] REN Jiahuan, LIAO Qing, HUANG Han et al. Efficient bosonic condensation of exciton polaritons in an h-aggregate organic single-crystal microcavity[J]. Nano Letters, 20, 7550-7557(2020).
[76] TANG Ji, ZHANG Jian, LV Yuanchao et al. Room temperature exciton-polariton Bose-Einstein condensation in organic single-crystal microribbon cavities[J]. Nature Communications, 12, 3265(2021).
[77] DENG Hui, WEIHS G, SNOKE D et al. Polariton lasing vs. photon lasing in a semiconductor microcavity[J]. Proceedings of the National Academy of Sciences, 100, 15318-15323(2003).
[78] KOSTERLITZ J M, THOULESS D J. Ordering, metastability and phase transitions in two-dimensional systems[J]. Journal of Physics C: Solid State Physics, 6, 1181(1973).
[79] HALDANE F D M. Model for a quantum hall effect without landau levels: condensed-matter realization of the "parity anomaly"[J]. Physical Review Letters, 61, 2015-2018(1988).
[80] KLITZING K V, DORDA G, PEPPER M. New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance[J]. Physical Review Letters, 45, 494-497(1980).
[81] HALDANE F D M, RAGHU S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry[J]. Physical Review Letters, 100, 013904(2008).
[82] HAFEZI M, DEMLER E A, LUKIN M D et al. Robust optical delay lines with topological protection[J]. Nature Physics, 7, 907-912(2011).
[83] KARZIG T, BARDYN C E, LINDNER N H et al. Topological polaritons[J]. Physical Review X, 5, 031001(2015).
[84] BARDYN C E, KARZIG T, REFAEL G et al. Topological polaritons and excitons in garden-variety systems[J]. Physical Review B, 91, 161413(2015).
[85] VNALITOVALITOV A, DSOLNYSHKOV D, MALPUECH G. Polariton Z topological insulator[J]. Physical Review Letters, 114, 116401(2015).
[86] SUN M, KO D, LEYKAM D et al. Exciton-polariton topological insulator with an array of magnetic dots[J]. Physical Review Applied, 12, 064028(2019).
[87] RECHTSMAN M C, ZEUNER J M, PLOTNIKL Y et al. Photonic floquet topological insulators[J]. Nature, 496, 196-200(2013).
[88] HAFEZI M, MITTAL S, FAN J et al. Imaging topological edge states in silicon photonics[J]. Nature Photonics, 7, 1001-1005(2013).
[89] ST-JEAN P, GOBLOT V, GALOPIN E et al. Lasing in topological edge states of a one-dimensionallattice[J]. Nature Photonics, 11, 651-656(2017).
[90] KLEMBT S, HARDER T H, EGOROV O A et al. Exciton-polariton topological insulator[J]. Nature, 562, 552-556(2018).
[91] BAHARI B, NDAO A, VALLINI F et al. Nonreciprocal lasing in topological cavities of arbitrary geometries[J]. Science, 358, 636-640(2017).
[92] HARARI G, BANDRES M A, LUMER Y et al. Topological insulator laser: theory[J]. Science, 359, eaar4003(2018).
[93] SHAO Zengkai, CHEN Huazhou, WANG Suo et al. A high-performance topological bulk laser based on band-inversion-induced reflection[J]. Nature Nanotechnology, 15, 67-72(2020).
[94] YANG Lechen, LI Guangrui, GAO Xiaomei et al. Topological-cavity surface-emitting laser[J]. Nature Photonics, 16, 279-283(2022).
Get Citation
Copy Citation Text
Jinlong ZHU, Hongbing FU, Qing LIAO. Advances in Organic Microcavity Lasers Based on Different Resonant Cavity Structures(Invited)[J]. Acta Photonica Sinica, 2024, 53(5): 0553105
Category: Special Issue for Microcavity Photonics
Received: Feb. 29, 2024
Accepted: Apr. 30, 2024
Published Online: Jun. 20, 2024
The Author Email: Qing LIAO (liaoqing@cnu.edu.cn)