Chinese Optics Letters, Volume. 23, Issue 7, 071104(2025)
Enhancing terahertz imaging with Rydberg atom-based sensors using untrained neural networks Editors' Pick
[9] P. M. Echternach, S. van Berkel, A. D. Beyer et al. Large array of single-photon counting quantum capacitance detectors. IEEE Trans. Terahertz Sci. Technol., 12, 211(2022).
[12] M. Liu, Z. Cai, S. Zhou et al. A 16.4kPixel 3.08-to-3.86 THz digital real-time CMOS image sensor with 73 dB dynamic range. 2023 IEEE International Solid- State Circuits Conference, 4(2023).
[15] D. A. Anderson, L. F. Goncalves, R. Legaie et al. Towards Rydberg atom synthetic apertures: Wide-area high-resolution rf amplitude and phase imaging with Rydberg probes. 2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW), 1(2023).
[23] C. Carr, M. Tanasittikosol, A. Sargsyan et al. Three-photon electromagnetically induced transparency using Rydberg states(2012).
[28] O. Ronneberger, P. Fischer, T. Brox. U-net: Convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, 234(2015).
Get Citation
Copy Citation Text
Jun Wan, Bin Zhang, Xianzhe Li, Tao Li, Qirong Huang, Xinyu Yang, Kaiqing Zhang, Wei Huang, Haixiao Deng, "Enhancing terahertz imaging with Rydberg atom-based sensors using untrained neural networks," Chin. Opt. Lett. 23, 071104 (2025)
Category: Imaging Systems and Image Processing
Received: Feb. 6, 2025
Accepted: Mar. 20, 2025
Published Online: Jun. 20, 2025
The Author Email: Haixiao Deng (denghx@sari.ac.cn)