Laser & Optoelectronics Progress, Volume. 62, Issue 8, 0815012(2025)

Stereo Matching Algorithm Based on Adaptive Spatial Convolution

Fanna Meng1、*, ZouYongjia1, Yang Cao1, Jin Lü2, and Hongfei Yu1
Author Affiliations
  • 1School of Artificial Intelligence and Software, Liaoning Petrochemical University, Fushun 113000, Liaoning , China
  • 2Neusoft Reach Automotive Technology (Shenyang) Co., Ltd., Shenyang 110179, Liaoning , China
  • show less
    Figures & Tables(12)
    Overall framework of network
    Adaptive spatial convolution module
    Comparison of disparity maps in KITTI reflection areas. (a) Left view; (b) benchmark algorithm; (c) ours
    Comparison of disparity maps in KITTI occlusion regions. (a) Left view; (b) benchmark algorithm; (c) ours
    Visualization results comparison on Middlebury dataset. (a) Left view; (b) benchmark algorithm; (c) ours
    • Table 1. Pre-training model parameters

      View table

      Table 1. Pre-training model parameters

      Parameter nameParameter value
      Step2×105
      Learning rate2×10-4
      Iteration round22
      Batch size8
    • Table 2. Ablation experiment

      View table

      Table 2. Ablation experiment

      Ablation moduleEPE /pixelD1 /%Param /M
      RAFT-Stereo0.536.1011.23
      RAFT-Stereo+ASCT0.495.6311.47
      RAFT-Stereo+multi-scale GRUs0.505.3811.64
      RAFT-Stereo+ASCT+multi-scale GRUs (ours)0.465.3011.81
    • Table 3. Only ablation analysis of changing ASCT convolutional kernel number κ

      View table

      Table 3. Only ablation analysis of changing ASCT convolutional kernel number κ

      Kernel numberEPE /pixelD1 /%
      20.506.08
      30.495.96
      40.495.63
    • Table 4. Only ablation analysis of changing GRU convolutional kernel size

      View table

      Table 4. Only ablation analysis of changing GRU convolutional kernel size

      Kernel sizeEPE /pixelD1 /%
      3×30.536.10
      3×3+5×50.525.84
      3×3+1×10.505.38
    • Table 5. Quantitative results with existing mainstream stereo matching methods on KITTI 2015 test

      View table

      Table 5. Quantitative results with existing mainstream stereo matching methods on KITTI 2015 test

      MethodKITTI-2015 (all)KITTI-2015 (noc)Runtime/ s
      D1-bg/%D1-fg/%D1-all/%D1-bg/%D1-fg/%D1-all/%
      RAFT-Stereo121.583.051.821.452.941.690.38
      CRE-Stereo251.452.861.691.332.601.540.41
      IGEV-Stereo131.382.671.591.272.621.490.18
      Los261.422.811.651.292.661.520.19
      CroCo-Stereo271.382.651.591.302.561.510.93
      MDA281.372.641.581.262.581.480.32
      Ours1.422.691.581.242.641.470.44
    • Table 6. Quantitative results with existing mainstream stereo matching methods on KITTI 2012 test

      View table

      Table 6. Quantitative results with existing mainstream stereo matching methods on KITTI 2012 test

      MethodKITTI-2012 (all)KITTI-2012 (reflective)
      2-noc2-all3-noc3-allEPE-nocEPE-all2-noc2-all3-noc3-all
      RAFT-Stereo121.922.421.301.660.40.58.419.875.406.48
      CRE-Stereo251.722.181.141.460.40.59.7111.266.277.27
      IGEV-Stereo131.712.171.121.440.40.47.298.484.114.76
      MS-ACV291.752.301.111.440.40.5
      DVANet301.782.391.091.520.40.59.6311.995.687.48
      HCR311.692.181.091.420.40.49.7811.936.017.68
      MDA281.762.261.091.430.40.59.7911.895.647.22
      Ours1.632.061.071.400.40.57.138.014.394.62
    • Table 7. Quantitative results with mainstream stereo matching methods on Scene Flow, ETH3D and Middlebury

      View table

      Table 7. Quantitative results with mainstream stereo matching methods on Scene Flow, ETH3D and Middlebury

      MethodScene FlowETH3DMiddlebury
      EPE /pixelD-1 /%Half error /%Quarter error /%
      GANet320.846.513.58.5
      RAFT-Stereo120.543.28.77.3
      IGEV-Stereo130.473.67.16.2
      DLNR330.489.5
      IGEV++340.503.57.8
      Ours0.463.86.66.0
    Tools

    Get Citation

    Copy Citation Text

    Fanna Meng, ZouYongjia, Yang Cao, Jin Lü, Hongfei Yu. Stereo Matching Algorithm Based on Adaptive Spatial Convolution[J]. Laser & Optoelectronics Progress, 2025, 62(8): 0815012

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Aug. 22, 2024

    Accepted: Oct. 28, 2024

    Published Online: Mar. 24, 2025

    The Author Email:

    DOI:10.3788/LOP241894

    CSTR:32186.14.LOP241894

    Topics