Chinese Journal of Lasers, Volume. 50, Issue 11, 1101003(2023)

Application of Neural Network in Ultrafast Optics

Xiaoxian Zhu1,2,3, Yitan Gao1,3, Yiming Wang1,2,3, Ji Wang3, Kun Zhao1,3、*, and Zhiyi Wei1,2,3
Author Affiliations
  • 1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
  • show less
    References(103)

    [1] Silver D, Schrittwieser J, Simonyan K et al. Mastering the game of go without human knowledge[J]. Nature, 550, 354-359(2017).

    [2] Brown T B, Mann B, Ryder N et al. Language models are few-shot learners[C], 1877-1901(2020).

    [3] Sugioka K, Cheng Y. Ultrafast lasers: reliable tools for advanced materials processing[J]. Light: Science & Applications, 3, e149(2014).

    [4] Fermann M E, Galvanauskas A, Sucha G[M]. Ultrafast lasers: technology and applications(2002).

    [5] Sibbett W, Lagatsky A A, Brown C T A. The development and application of femtosecond laser systems[J]. Optics Express, 20, 6989-7001(2012).

    [6] Xu C, Wise F W. Recent advances in fibre lasers for nonlinear microscopy[J]. Nature Photonics, 7, 875-882(2013).

    [7] Udem T, Holzwarth R, Hänsch T W. Optical frequency metrology[J]. Nature, 416, 233-237(2002).

    [8] Jones D J, Diddams S A, Ranka J K et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis[J]. Science, 288, 635-640(2000).

    [9] Reichert J, Holzwarth R, Udem T et al. Measuring the frequency of light with mode-locked lasers[J]. Optics Communications, 172, 59-68(1999).

    [10] Diddams S A, Jones D J, Ye J et al. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb[J]. Physical Review Letters, 84, 5102-5105(2000).

    [11] Bloom B J, Nicholson T L, Williams J R et al. An optical lattice clock with accuracy and stability at the 10-18 level[J]. Nature, 506, 71-75(2014).

    [12] Nemitz N, Ohkubo T, Takamoto M et al. Frequency ratio of Yb and Sr clocks with 5×10-17 uncertainty at 150 seconds averaging time[J]. Nature Photonics, 10, 258-261(2016).

    [13] Ghelfi P, Laghezza F, Scotti F et al. A fully photonics-based coherent radar system[J]. Nature, 507, 341-345(2014).

    [14] Khilo A, Spector S J, Grein M E et al. Photonic ADC: overcoming the bottleneck of electronic jitter[J]. Optics Express, 20, 4454-4469(2012).

    [15] He P, Liu Y Y, Zhao K et al. High-efficiency supercontinuum generation in solid thin plates at 0.1 TW level[J]. Optics Letters, 42, 474-477(2017).

    [16] Chini M, Zhao K, Chang Z H. The generation, characterization and applications of broadband isolated attosecond pulses[J]. Nature Photonics, 8, 178-186(2014).

    [17] Lee J, Kim Y J, Lee K et al. Time-of-flight measurement with femtosecond light pulses[J]. Nature Photonics, 4, 716-720(2010).

    [18] Coddington I, Swann W C, Nenadovic L et al. Rapid and precise absolute distance measurements at long range[J]. Nature Photonics, 3, 351-356(2009).

    [19] Li C H, Benedick A J, Fendel P et al. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1[J]. Nature, 452, 610-612(2008).

    [20] Steinmetz T, Wilken T, Araujo-Hauck C et al. Laser frequency combs for astronomical observations[J]. Science, 321, 1335-1337(2008).

    [21] Scherer N F, Knee J L, Smith D D et al. Femtosecond photofragment spectroscopy: the reaction ICN→CN+I[J]. The Journal of Physical Chemistry, 89, 5141-5143(1985).

    [22] Zewail A H. Laser femtochemistry[J]. Science, 242, 1645-1653(1988).

    [23] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives[J]. Journal of the Optical Society of America B, 27, B63-B92(2010).

    [24] Fermann M E, Hartl I. Ultrafast fibre lasers[J]. Nature Photonics, 7, 868-874(2013).

    [25] Pu G Q, Yi L L, Zhang L et al. Intelligent control of mode-locked femtosecond pulses by time-stretch-assisted real-time spectral analysis[J]. Light: Science & Applications, 9, 13(2020).

    [26] Winters D G, Kirchner M S, Backus S J et al. Electronic initiation and optimization of nonlinear polarization evolution mode-locking in a fiber laser[J]. Optics Express, 25, 33216-33225(2017).

    [27] Woodward R I, Kelleher E J R. Genetic algorithm-based control of birefringent filtering for self-tuning, self-pulsing fiber lasers[J]. Optics Letters, 42, 2952-2955(2017).

    [28] Pu G Q, Yi L L, Zhang L et al. Genetic algorithm-based fast real-time automatic mode-locked fiber laser[J]. IEEE Photonics Technology Letters, 32, 7-10(2020).

    [29] Woodward R I, Kelleher E J R. Towards ‘smart lasers’: self-optimisation of an ultrafast pulse source using a genetic algorithm[J]. Scientific Reports, 6, 37616(2016).

    [30] Andral U, Fodil R S, Amrani F et al. Fiber laser mode locked through an evolutionary algorithm[J]. Optica, 2, 275-278(2015).

    [31] Andral U, Buguet J, Si Fodil R et al. Toward an autosetting mode-locked fiber laser cavity[J]. Journal of the Optical Society of America B, 33, 825-833(2016).

    [32] Pu G Q, Yi L L, Zhang L et al. Intelligent programmable mode-locked fiber laser with a human-like algorithm[J]. Optica, 6, 362-369(2019).

    [33] Kokhanovskiy A, Bednyakova A, Kuprikov E et al. Machine learning-based pulse characterization in figure-eight mode-locked lasers[J]. Optics Letters, 44, 3410-3413(2019).

    [34] Baumeister T, Brunton S L, Kutz J N. Deep learning and model predictive control for self-tuning mode-locked lasers[J]. Journal of the Optical Society of America B, 35, 617-626(2018).

    [35] Boscolo S, Finot C[M]. Shaping light in nonlinear optical fibers(2017).

    [36] Hammani K, Kibler B, Fatome J et al. Nonlinear spectral shaping and optical rogue events in fiber-based systems[J]. Optical Fiber Technology, 18, 248-256(2012).

    [37] Mollenauer L F, Stolen R H, Gordon J P. Experimental observation of picosecond pulse narrowing and solitons in optical fibers[J]. Physical Review Letters, 45, 1095-1098(1980).

    [38] Finot C, Dudley J M, Kibler B et al. Optical parabolic pulse generation and applications[J]. IEEE Journal of Quantum Electronics, 45, 1482-1489(2009).

    [39] Boscolo S, Latkin A I, Turitsyn S K. Passive nonlinear pulse shaping in normally dispersive fiber systems[J]. IEEE Journal of Quantum Electronics, 44, 1196-1203(2008).

    [40] Kutuzyan A A, Mansuryan T G, Esayan G L et al. Dispersive regime of spectral compression[J]. Quantum Electronics, 38, 383-387(2008).

    [41] Wetzel B, Kues M, Roztocki P et al. Customizing supercontinuum generation via on-chip adaptive temporal pulse-splitting[J]. Nature Communications, 9, 4884(2018).

    [42] Michaeli L, Bahabad A. Genetic algorithm driven spectral shaping of supercontinuum radiation in a photonic crystal fiber[J]. Journal of Optics, 20, 055501(2018).

    [43] Zhang W Q, Shahraam A V, Monro T M. A genetic algorithm based approach to fiber design for high coherence and large bandwidth supercontinuum generation[J]. Optics Express, 17, 19311-19327(2009).

    [44] Finot C, Gukov I, Hammani K et al. Nonlinear sculpturing of optical pulses with normally dispersive fiber-based devices[J]. Optical Fiber Technology, 45, 306-312(2018).

    [45] Farfan C A, Epstein J, Turner D B. Femtosecond pulse compression using a neural-network algorithm[J]. Optics Letters, 43, 5166-5169(2018).

    [46] Cybenko G. Approximation by superpositions of a sigmoidal function[J]. Mathematics of Control, Signals and Systems, 2, 303-314(1989).

    [47] Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 2, 359-366(1989).

    [48] Hornik K, Stinchcombe M, White H. Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks[J]. Neural Networks, 3, 551-560(1990).

    [49] Giri S K, Saalmann U, Rost J M. Purifying electron spectra from noisy pulses with machine learning using synthetic Hamilton matrices[J]. Physical Review Letters, 124, 113201(2020).

    [50] Shvetsov-Shilovski N I, Lein M. Deep learning for retrieval of the internuclear distance in a molecule from interference patterns in photoelectron momentum distributions[J]. Physical Review A, 105, L021102(2022).

    [51] Oliari V, Goossens S, Häger C et al. Revisiting efficient multi-step nonlinearity compensation with machine learning: an experimental demonstration[J]. Journal of Lightwave Technology, 38, 3114-3124(2020).

    [52] Essiambre R J, Kramer G, Winzer P J et al. Capacity limits of optical fiber networks[J]. Journal of Lightwave Technology, 28, 662-701(2010).

    [53] Cerullo G, De Silvestri S. Ultrafast optical parametric amplifiers[J]. Review of Scientific Instruments, 74, 1-18(2003).

    [54] Agostini P, Breger P, L’Huillier A et al. Giant stark shifts in multiphoton ionization[J]. Physical Review Letters, 63, 2208-2211(1989).

    [55] Gautam N, Choudhary A, Lall B. Comparative study of neural network architectures for modelling nonlinear optical pulse propagation[J]. Optical Fiber Technology, 64, 102540(2021).

    [56] Liu X W, Zhang G J, Li J E et al. Deep learning for feynman’s path integral in strong-field time-dependent dynamics[J]. Physical Review Letters, 124, 113202(2020).

    [57] Genty G, Salmela L, Dudley J M et al. Machine learning and applications in ultrafast photonics[J]. Nature Photonics, 15, 91-101(2021).

    [58] Salmela L, Tsipinakis N, Foi A et al. Predicting ultrafast nonlinear dynamics in fibre optics with a recurrent neural network[J]. Nature Machine Intelligence, 3, 344-354(2021).

    [59] Tikan A, Bielawski S, Szwaj C et al. Single-shot measurement of phase and amplitude by using a heterodyne time-lens system and ultrafast digital time-holography[J]. Nature Photonics, 12, 228-234(2018).

    [60] Martins G R, Silva L C B, Segatto M E V et al. Design and analysis of recurrent neural networks for ultrafast optical pulse nonlinear propagation[J]. Optics Letters, 47, 5489-5492(2022).

    [61] Boscolo S, Finot C. Artificial neural networks for nonlinear pulse shaping in optical fibers[J]. Optics & Laser Technology, 131, 106439(2020).

    [62] Nisoli M, De Silvestri S, Svelto O. Generation of high energy 10 fs pulses by a new pulse compression technique[J]. Applied Physics Letters, 68, 2793-2795(1996).

    [63] Matsubara E, Yamane K, Sekikawa T et al. Generation of 2.6 fs optical pulses using induced-phase modulation in a gas-filled hollow fiber[J]. Journal of the Optical Society of America B, 24, 985-989(2007).

    [64] Wirth A, Hassan M T, Grguraš I et al. Synthesized light transients[J]. Science, 334, 195-200(2011).

    [65] Suda A, Hatayama M, Nagasaka K et al. Generation of sub-10-fs, 5-mJ-optical pulses using a hollow fiber with a pressure gradient[J]. Applied Physics Letters, 86, 111116(2005).

    [66] Bohman S, Suda A, Kanai T et al. Generation of 5.0 fs, 5.0 mJ pulses at 1 kHz using hollow-fiber pulse compression[J]. Optics Letters, 35, 1887-1889(2010).

    [67] Voronin A A, Zheltikov A M, Ditmire T et al. Subexawatt few-cycle lightwave generation via multipetawatt pulse compression[J]. Optics Communications, 291, 299-303(2013).

    [68] Lu C H, Tsou Y J, Chen H Y et al. Generation of intense supercontinuum in condensed media[J]. Optica, 1, 400-406(2014).

    [69] Perry M D, Ditmire T, Stuart B C. Self-phase modulation in chirped-pulse amplification[J]. Optics Letters, 19, 2149-2151(1994).

    [70] Gao Y T, Wang X Z, Zhu X X et al. Quantification and analysis of the nonlinear effects in spectral broadening through solid medium of femtosecond pulses by neural network[J]. Physical Review Research, 4, 013035(2022).

    [71] Trebino R[M]. Frequency-resolved optical gating: the measurement of ultrashort laser pulses(2000).

    [72] Gagnon J, Goulielmakis E, Yakovlev V S. The accurate FROG characterization of attosecond pulses from streaking measurements[J]. Applied Physics B, 92, 25-32(2008).

    [73] Kane D J. Principal components generalized projections: a review[J]. Journal of the Optical Society of America B, 25, A120-A132(2008).

    [74] Nicholson J W, Omenetto F G, Funk D J et al. Evolving FROGS: phase retrieval from frequency-resolved optical gating measurements by use of genetic algorithms[J]. Optics Letters, 24, 490-492(1999).

    [75] Shu S F. Evolving ultrafast laser information by a learning genetic algorithm combined with a knowledge base[J]. IEEE Photonics Technology Letters, 18, 379-381(2006).

    [76] Kamilov U S, Papadopoulos I N, Shoreh M H et al. Learning approach to optical tomography[J]. Optica, 2, 517-522(2015).

    [77] Rivenson Y, Wu Y C, Ozcan A. Deep learning in holography and coherent imaging[J]. Light: Science & Applications, 8, 85(2019).

    [78] Borhani N, Kakkava E, Moser C et al. Learning to see through multimode fibers[J]. Optica, 5, 960-966(2018).

    [79] Li Y Z, Xue Y J, Tian L. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media[J]. Optica, 5, 1181-1190(2018).

    [80] Liu T R, de Haan K, Rivenson Y et al. Deep learning-based super-resolution in coherent imaging systems[J]. Scientific Reports, 9, 3926(2019).

    [81] Krumbügel M A, Ladera C L, DeLong K W et al. Direct ultrashort-pulse intensity and phase retrieval by frequency-resolved optical gating and a computational neural network[J]. Optics Letters, 21, 143-145(1996).

    [82] Zahavy T, Dikopoltsev A, Moss D et al. Deep learning reconstruction of ultrashort pulses[J]. Optica, 5, 666-673(2018).

    [83] Xu S Y, Zhu X X, Wang J et al. Convolutional neural network for transient grating frequency-resolved optical gating trace retrieval and its algorithm optimization[J]. Chinese Physics B, 30, 048402(2021).

    [84] Leone S R, McCurdy C W, Burgdörfer J et al. What will it take to observe processes in ‘real time’?[J]. Nature Photonics, 8, 162-166(2014).

    [85] Mairesse Y, Quéré F. Frequency-resolved optical gating for complete reconstruction of attosecond bursts[J]. Physical Review A, 71, 011401(2005).

    [86] Chini M, Gilbertson S, Khan S D et al. Characterizing ultrabroadband attosecond lasers[J]. Optics Express, 18, 13006-13016(2010).

    [87] Zhao X, Wei H, Wu Y et al. Phase-retrieval algorithm for the characterization of broadband single attosecond pulses[J]. Physical Review A, 95, 043407(2017).

    [88] Keathley P D, Bhardwaj S, Moses J et al. Volkov transform generalized projection algorithm for attosecond pulse characterization[J]. New Journal of Physics, 18, 073009(2016).

    [89] Yu W W, Zhao X, Wei H et al. Method for spectral phase retrieval of single attosecond pulses utilizing the autocorrelation of photoelectron streaking spectra[J]. Physical Review A, 99, 033403(2019).

    [90] White J, Chang Z H. Attosecond streaking phase retrieval with neural network[J]. Optics Express, 27, 4799-4807(2019).

    [91] Zhu Z Y, White J, Chang Z H et al. Attosecond pulse retrieval from noisy streaking traces with conditional variational generative network[J]. Scientific Reports, 10, 5782(2020).

    [92] Brunner C, Duensing A, Schröder C et al. Deep learning in attosecond metrology[J]. Optics Express, 30, 15669-15684(2022).

    [93] Teğin U, Rahmani B, Kakkava E et al. Controlling spatiotemporal nonlinearities in multimode fibers with deep neural networks[J]. APL Photonics, 5, 030804(2020).

    [94] Comin A, Hartschuh A. Efficient optimization of SHG hotspot switching in plasmonic nanoantennas using phase-shaped laser pulses controlled by neural networks[J]. Optics Express, 26, 33678-33686(2018).

    [95] Dudley J M, Genty G, Mussot A et al. Rogue waves and analogies in optics and oceanography[J]. Nature Reviews Physics, 1, 675-689(2019).

    [96] Närhi M, Salmela L, Toivonen J et al. Machine learning analysis of extreme events in optical fibre modulation instability[J]. Nature Communications, 9, 4923(2018).

    [97] Raissi M, Perdikaris P, Karniadakis G E. Inferring solutions of differential equations using noisy multi-fidelity data[J]. Journal of Computational Physics, 335, 736-746(2017).

    [98] Raissi M, Karniadakis G E. Hidden physics models: machine learning of nonlinear partial differential equations[J]. Journal of Computational Physics, 357, 125-141(2018).

    [99] Owhadi H. Bayesian numerical homogenization[J]. Multiscale Modeling & Simulation, 13, 812-828(2015).

    [100] Raissi M, Perdikaris P, Karniadakis G E. Numerical Gaussian processes for time-dependent and nonlinear partial differential equations[J]. SIAM Journal on Scientific Computing, 40, A172-A198(2018).

    [101] Owhadi H, Scovel C, Sullivan T. Brittleness of Bayesian inference under finite information in a continuous world[J]. Electronic Journal of Statistics, 9, 1-79(2015).

    [102] Brunton S L, Proctor J L, Kutz J N. Discovering governing equations from data by sparse identification of nonlinear dynamical systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 113, 3932-3937(2016).

    [103] Raissi M, Perdikaris P, Karniadakis G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 378, 686-707(2019).

    Tools

    Get Citation

    Copy Citation Text

    Xiaoxian Zhu, Yitan Gao, Yiming Wang, Ji Wang, Kun Zhao, Zhiyi Wei. Application of Neural Network in Ultrafast Optics[J]. Chinese Journal of Lasers, 2023, 50(11): 1101003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Mar. 1, 2023

    Accepted: Apr. 28, 2023

    Published Online: May. 29, 2023

    The Author Email: Zhao Kun (zhaokun@iphy.ac.cn)

    DOI:10.3788/CJL230572

    Topics