Laser & Infrared, Volume. 54, Issue 12, 1871(2024)

Study of infrared variable emissivity materials

MA Chuang1, WANG Zhen2, WANG Xin-yu2, LIU Lan-xuan1、*, CHEN Wen-rui1, and FENG Zeng-hui1
Author Affiliations
  • 1China Academy of Machinery Wuhan Research Institute of Materials Protection Co., Ltd., Wuhan 430030, China
  • 2China Ship Development and Design Center, Wuhan 430000, China
  • show less
    References(36)

    [1] [1] Cui C, Ding Q M, Yu S Y, et al. Strategies to break the trade-off between infrared transparency and conductivity[J]. Progress in Materials Science, 2023, 136: 101112.

    [3] [3] Cheng Y J, Sun X X, Yang S, et al. Multifunctional elastic rGO hybrid aerogels for microwave absorption, infrared stealth and heat insulation[J]. Chemical Engineering Journal, 2023, 452: 139376.

    [4] [4] Hu J H, Hu Y, Ye Y H, et al. Unique applications of carbon materials in infrared stealth: a review[J]. Chemical Engineering Journal, 2023, 452: 139147.

    [7] [7] Wu C B, Wang Y W, Wang H B, et al. Facile fabrication of thermochromic VO2(M) films on TiO2-buffered soda-lime glass via a one-step photo-assisted spray pyrolysis route[J]. Ceramics International, 2024, 50(3): 5160-5168.

    [8] [8] Guo N, Zhao Z Y, Yan H J, et al. Dynamic thermal radiation regulation for thermal management[J]. Next Energy, 2023, 1(4): 100072.

    [9] [9] Wang S C, Jiang T Y, Meng Y, et al. Scalable thermochromic smart windows with passive radiative cooling regulation[J]. Science, 2021, 374(6574): 1501-1504.

    [11] [11] Ji H N, Liu D Q, Cheng H F, et al. Vanadium dioxide nanopowders with tunable emissivity for adaptive infrared camouflage in both thermal atmospheric windows[J]. Solar Energy Materials and Solar Cells, 2018, 175: 96-101.

    [12] [12] Kim H, Lahneman D, Rohde C, et al. VO2-based thin-film radiators with variable thermal emissivity[J]. Thin Solid Films, 2022, 759: 139455.

    [13] [13] Chen F, Yuan L, Wu X Y, et al. Simultaneous tuning of the phase transition temperature and infrared optical properties of Mo-doped VO2 powders for intelligent infrared stealth materials[J]. Ceramics International, 2023, 49(15): 25585-25593.

    [14] [14] Li P, Wang J W, Li Z Q, et al. Enhancing thermochromic properties of VO2 amorphous films on glass substrates by Sn-W co-doping[J]. Infrared Physics & Technology, 2023, 134: 104871.

    [15] [15] Ji H N, Liu D Q, Cheng H F. Infrared optical modulation characteristics of W-doped VO2(M) nanoparticles in the MWIR and LWIR regions[J]. Materials Science in Semiconductor Processing, 2020, 119: 105141.

    [16] [16] Kim H J, Choi Y H, Lee D, et al. Enhanced passive thermal stealth properties of VO2 thin films via gradient W doping[J]. Applied Surface Science, 2021, 561: 150056.

    [17] [17] Fan L L, Chen C, Zhu Y Y, et al. Surface treatment of VO2 films with enhancing the modulation of phase transition and thermochromic performance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 683: 132959.

    [18] [18] X P K, WuQ. Active modulation of a metasurface emitter based on phase-change material GST arrays[J]. Optical Materials, 2022, 133: 112832.

    [19] [19] Wang M, Su M. Thermal-optical readout of multi-level thermal emissivity Ge2Sb2Te5 patterns[J]. Materials Letters, 2019, 257: 126728.

    [20] [20] Su Y, Deng Z C, Qin W, et al. Adaptive infrared camouflage based on quasi-photonic crystal with Ge2Sb2Te5[J]. Optics Communications, 2021, 497: 127203.

    [21] [21] Wang B, Xu G P, Song S S, et al. Electro-emissive device based on novel PANI/Au composite films with neoteric mosaic structure for infrared stealth and thermal radiation control[J]. Electrochimica Acta, 2021, 390: 138891.

    [22] [22] Fernndez-Gutirrez Z, Pilloud D, Bruyre S, et al. Thermochromic SmNiO3- thin films deposited by magnetron sputtering and crystallized by soft-annealing in air[J]. Scripta Materialia, 2022, 218: 114795.

    [23] [23] Fernndez-Gutirrez Z, Bruyre S, Pilloud D, et al. Thermo-kinetic approach to the crystallization mechanism of thermochromic SmNiO3 thin films: an in situ study in air-annealing[J]. Journal of Alloys and Compounds, 2023, 960: 170799.

    [24] [24] Hua W S, Li J, Du Y J, et al. Theoretical simulation and mechanisms of SmNiO3-based phase change metamaterial for mid-infrared dynamic thermal control[J]. Optik, 2024, 296: 171556.

    [25] [25] Niu J L, Wang Y, Zou X L, et al. Infrared electrochromic materials, devices and applications[J]. Applied Materials Today, 2021, 24: 101073.

    [26] [26] Mei Z Y, Wang M Y, Ding Y L, et al. Transmittance correlated real-time resistivity modulation and insulator-metal transition of electrochromic WO3 thin films[J]. Vacuum, 2023, 214: 112219.

    [27] [27] Zhang X, Tian Y L, Li W J, et al. Preparation and performances of all-solid-state variable infrared emittance devices based on amorphous and crystalline WO3 electrochromic thin films[J]. Solar Energy Materials and Solar Cells, 2019, 200: 109916.

    [28] [28] Zhao J, Zhang S L, Chang S, et al. A flexible electrochromic device with variable infrared emissivity based on W18 O49 nanowire cathode and MXene infrared transparent conducting electrode[J]. Chemical Engineering Journal, 2024, 480: 148010.

    [29] [29] Li X B, Zhang L P, Xu G P, et al. Effect of ionic liquid electrolytes on the electrochemical stability and optical tunability of polyaniline-based infrared variable emittance devices[J]. Electrochimica Acta, 2020, 358: 136935.

    [30] [30] Chandrasekhar P, Zay B J, Birur G C, et al. Large, switchable electrochromism in the visible through far-infrared in conducting polymer devices[J]. Advanced Functional Materials, 2002, 12(2): 95-103.

    [31] [31] Zhang L P, Hao T T, Song S S, et al. Enhancing infrared electrochromic properties of the poly (styrene sulfonate) doped polyaniline composite film by morphology regulation[J]. Chemical Engineering Journal, 2023, 475: 145927.

    [32] [32] Hu J H, Hu Y, Ye Y H, et al. Unique applications of carbon materials in infrared stealth: a review[J]. Chemical Engineering Journal, 2023, 452: 139147.

    [33] [33] Salihoglu O, Uzlu H B, Yakar O, et al. Graphene-based adaptive thermal camouflage[J]. Nano Letters, 2018, 18(7): 4541-4548.

    [34] [34] Sun Y, Chang H C, Hu J, et al. Large-scale multifunctional carbon nanotube thin film as effective mid-infrared radiation modulator with long-term stability[J]. Advanced Optical Materials, 2020: 2001216.

    [35] [35] Lynch P J, Tripathi M, Amorim Graf A, et al. Mid-infrared electrochromics enabled by intraband modulation in carbon nanotube networks[J]. ACS Applied Materials & Interfaces, 2023, 15(8): 11225-11233.

    [36] [36] Zhou Z G, Fang Y S, Wang X, et al. Synergistic modulation of solar and thermal radiation in dynamic energy-efficient windows[J]. Nano Energy, 2022, 93: 106865.

    [37] [37] Yin H, Zhou X S, Zhou Z G, et al. Switchable kirigami structures as window envelopes for energy-efficient buildings.[J]. Research, 2023;6: 0103.

    [38] [38] Mandal J, Jia M, Overvig A, et al. Porous polymers with switchable optical transmittance for optical and thermal regulation[J]. Joule, 2019, 3(12): 3088-3099.

    [39] [39] Liu H D, Wang C Y, Chen G R, et al. Moisture assisted photo-engineered textiles for visible and self-adaptive infrared dual camouflage[J]. Nano Energy, 2022, 93: 106855.

    [40] [40] Ko J H, Kim D H, Hong S-H, et al. Polarization-driven thermal emission regulator based on self-aligned GST nanocolumns[J]. iScience, 2023, 26(1): 105780.

    Tools

    Get Citation

    Copy Citation Text

    MA Chuang, WANG Zhen, WANG Xin-yu, LIU Lan-xuan, CHEN Wen-rui, FENG Zeng-hui. Study of infrared variable emissivity materials[J]. Laser & Infrared, 2024, 54(12): 1871

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 28, 2024

    Accepted: Apr. 3, 2025

    Published Online: Apr. 3, 2025

    The Author Email: LIU Lan-xuan (liulanxuan123@163.com)

    DOI:10.3969/j.issn.1001-5078.2024.12.010

    Topics