Journal of Shandong Jiaotong University, Volume. 33, Issue 3, 1(2025)

Detection method for object passing through subway station barriers based on sensor data fusion

BAN Kuiguo, GAO Jiao*, RUAN Jiuhong, and SHEN Benlan
Author Affiliations
  • School of Rail Transportation, Shandong Jiaotong University, Jinan 250357, China
  • show less
    References(19)

    [3] [3] RAO A S, GUBBI J, MARUSIC S, et al. Crowd event detection on optical flow manifolds[J]. IEEE Transactions on Cybernetics, 2016, 46(7):1524-1537.

    [4] [4] MAJI D, NAGORI S, MATHEW M, et al. YOLO-pose:enhancing YOLO for multi person pose estimation using object keypoint similarity loss [C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New Orleans, LA, USA:IEEE, 2022:2636-2645.

    [5] [5] YAN S J, XIONG Y J, LIN D H. Spatial temporal graph convolutional networks for skeleton-based action recognition[C]/ /Proceedings of the AAAI Conference on Artificial Intelligence. New Orleans, Louisiana, USA:AAAI, 2018, 32(1):7444-7452.

    [6] [6] BREHAR R D, MURESAN M P, MARIA T, et al. Pedestrian street-cross action recognition in monocular far infrared sequences[J].IEEE Access, 2021, 9:74302-74324.

    [7] [7] DU Y, HOU Z J, LI X, et al. PointDMIG:a dynamic motion-informed graph neural network for 3D action recognition[J].Multimedia Systems, 2024, 30(4):192.

    [8] [8] SUN Z H, KE Q H, RAHMANI H, et al. Human action recognition from various data modalities:a review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(3):3200-3225.

    [9] [9] SHI Z S, LIANG J, LI Q Q, et al. Multi-modal multi-action video recognition[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Montreal, QC, Canada:IEEE, 2021:13658-13667.

    [10] [10] GUO W Z, WANG J W, WANG S P. Deep multimodal representation learning:a survey[J]. IEEE Access, 2019, 7:63373-63394.

    [11] [11] ZHANG D, JU X C, ZHANG W, et al. Multi-modal multi-label emotion recognition with heterogeneous hierarchical message passing[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Pennsylvania, USA:AAAI, 2021, 35(16):14338-14346.

    [12] [12] NIE W Z, YAN Y, SONG D, et al. Multi-modal feature fusion based on multi-layers LSTM for video emotion recognition[J].Multimedia Tools and Applications, 2021, 80(11):16205-16214.

    [13] [13] BLASCH E, PHAM T, CHONG C Y, et al. Machine learning/artificial intelligence for sensor data fusion-opportunities and challenges[J].IEEE Aerospace and Electronic Systems Magazine, 2021, 36(7):80-93.

    [14] [14] QIU S, ZHAO H K, JIANG N, et al. Multi-sensor information fusion based on machine learning for real applications in human activity recognition:state-of-the-art and research challenges[J].Information Fusion, 2022, 80:241-265.

    [16] [16] LIU H B, WU C, WANG H J. Real time object detection using LiDAR and camera fusion for autonomous driving[J].Scientific Reports, 2023, 13(1):8056.

    [17] [17] OSOKIN D. Real-time 2D multi-person pose estimation on CPU:lightweight OpenPose[EB/OL].(2018-11-29)[2024-12-21].https://arxiv.org/abs/1811.12004v1.

    [18] [18] CAO Z, SIMON T, WEI S H, et al. Realtime multi-person 2D pose estimation using part affinity fields[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA:IEEE, 2017:1302-1310.

    [19] [19] ZHOU Y, TUZEL O. VoxelNet:end-to-end learning for point cloud based 3D object detection[C]//Proceedings of IEEE /CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA:IEEE, 2018:4490-4499.

    [20] [20] YU B, YIN H T, ZHU Z X. Spatio-temporal graph convolutional networks:a deep learning framework for traffic forecasting[EB/OL].(2018-07-12)[2024-12-21].https://arxiv.org/abs/1709.04875v4.

    [21] [21] LI S Y, JIN X Y, XUAN Y, et al. Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting[EB/OL].(2020-01-03)[2024-12-21].https://arxiv.org/abs/1907.00235v3.

    [22] [22] ZHOU H Y, LIU Q J, WANG Y H. Learning discriminative representations for skeleton based action recognition[C]/ /Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver, BC, Canada:IEEE, 2023:10608-10617.

    Tools

    Get Citation

    Copy Citation Text

    BAN Kuiguo, GAO Jiao, RUAN Jiuhong, SHEN Benlan. Detection method for object passing through subway station barriers based on sensor data fusion[J]. Journal of Shandong Jiaotong University, 2025, 33(3): 1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jan. 21, 2025

    Accepted: Aug. 21, 2025

    Published Online: Aug. 21, 2025

    The Author Email: GAO Jiao (gaojiao@sdjtu.edu.cn)

    DOI:10.3969/j.issn.1672-0032.2025.03.001

    Topics