Chinese Journal of Lasers, Volume. 50, Issue 1, 0113009(2023)
[in Chinese]
[1] Ginsberg N S, Tisdale W A. Spatially resolved photogenerated exciton and charge transport in emerging semiconductors[J]. Annual Review of Physical Chemistry, 71, 1-30(2020).
[4] Chang C, Chen W, Chen Y et al. Recent progress on two-dimensional materials[J]. Acta Physico-Chimica Sinica, 37, 2108017(2021).
[5] Wang W B, Chen Z X, Sui X Y et al. Phase/size dual controlled 2D semiconductor In2X3 (X=S, Se, Te) for saturable absorption modulation[J]. Nano Research, 15, 5633-5639(2022).
[7] Caldwell J D, Aharonovich I, Cassabois G et al. Photonics with hexagonal boron nitride[J]. Nature Reviews Materials, 4, 552-567(2019).
[12] Shi J W, Wu X X, Wu K M et al. Giant enhancement and directional second harmonic emission from monolayer WS2 on silicon substrate via Fabry-Pérot micro-cavity[J]. ACS Nano, 16, 13933-13941(2022).
[14] Zhu B R, Chen X, Cui X D. Exciton binding energy of monolayer WS2[J]. Scientific Reports, 5, 9218(2015).
[15] Zhang G W, Chaves A, Huang S Y et al. Determination of layer-dependent exciton binding energies in few-layer black phosphorus[J]. Science Advances, 4, eaap9977(2018).
[16] Zhang M L, Huang L Y, Zhang X et al. Comment on “linear scaling of the exciton binding energy versus the band gap of two-dimensional materials”[J]. Physical Review Letters, 118, 209701(2017).
[19] Mikhnenko O V, Blom P W M, Nguyen T Q. Exciton diffusion in organic semiconductors[J]. Energy & Environmental Science, 8, 1867-1888(2015).
[20] Smith L M, Wake D R, Wolfe J P et al. Picosecond imaging of photoexcited carriers in quantum wells: anomalous lateral confinement at high densities[J]. Physical Review B, 38, 5788-5791(1988).
[21] Anderson P W. Absence of diffusion in certain random lattices[J]. Physical Review, 109, 1492-1505(1958).
[24] Guo X Q. Einstein relation for random walks in random environment[J]. The Annals of Probability, 44, 324-359(2016).
[25] Ben Arous G, Hu Y Y, Olla S et al. Einstein relation for biased random walk on Galton-Watson trees[J]. Annales De l'Institut Henri Poincaré, Probabilitéset Statistiques, 49, 698-721(2013).
[26] Anta J A, Mora-Seró I, Dittrich T et al. Interpretation of diffusion coefficients in nanostructured materials from random walk numerical simulation[J]. Physical Chemistry Chemical Physics, 10, 4478-4485(2008).
[28] Baranovskii S D, Faber T, Hensel F et al. On the Einstein relation for hopping electrons[J]. Journal of Non-Crystalline Solids, 227/228/229/230, 158-161(1998).
[31] Ceballos F, Zhao H. Ultrafast laser spectroscopy of two-dimensional materials beyond graphene[J]. Advanced Functional Materials, 27, 1604509(2017).
[32] Nie Z G, Long R, Sun L F et al. Ultrafast carrier thermalization and cooling dynamics in few-layer MoS2[J]. ACS Nano, 8, 10931-10940(2014).
[33] Liu Q R, Wei K, Tang Y X et al. Visualizing hot-carrier expansion and cascaded transport in WS2 by ultrafast transient absorption microscopy[J]. Advanced Science, 9, 2105746(2022).
[34] Jin Z H, Li X D, Mullen J T et al. Intrinsic transport properties of electrons and holes in monolayer transition-metal dichalcogenides[J]. Physical Review B, 90, 045422(2014).
[41] Akselrod G M, Deotare P B, Thompson N J et al. Visualization of exciton transport in ordered and disordered molecular solids[J]. Nature Communications, 5, 3646(2014).
[42] Zhang Z L, Sung J, Toolan D T W et al. Ultrafast exciton transport at early times in quantum dot solids[J]. Nature Materials, 21, 533-539(2022).
[43] Seo S B, Nah S, Song J C et al. Anomalous oscillating behavior of ultrafast spatiotemporal hot carrier diffusion in two-dimensional PtSe2[J]. ACS Photonics, 9, 1783-1792(2022).
[46] Hill A H, Smyser K E, Kennedy C L et al. Screened charge carrier transport in methylammonium lead iodide perovskite thin films[J]. The Journal of Physical Chemistry Letters, 8, 948-953(2017).
[49] Sui X Y, Wang H M, Liang C et al. Ultrafast internal exciton dissociation through edge states in MoS2 nanosheets with diffusion blocking[J]. Nano Letters, 22, 5651-5658(2022).
[50] High A A, Novitskaya E E, Butov L V et al. Control of exciton fluxes in an excitonic integrated circuit[J]. Science, 321, 229-231(2008).
[51] High A A, Hammack A T, Butov L V et al. Exciton optoelectronic transistor[J]. Optics Letters, 32, 2466-2468(2007).
[53] Hagn M, Zrenner A, Böhm G et al. Electric-field-induced exciton transport in coupled quantum well structures[J]. Applied Physics Letters, 67, 232-234(1995).
[60] Uddin S Z, Kim H, Lorenzon M et al. Neutral exciton diffusion in monolayer MoS2[J]. ACS Nano, 14, 13433-13440(2020).
[61] Cheng G H, Li B K, Jin Z J et al. Observation of diffusion and drift of the negative trions in monolayer WS2[J]. Nano Letters, 21, 6314-6320(2021).
[63] Bellus M Z, Ceballos F, Chiu H Y et al. Tightly bound trions in transition metal dichalcogenide heterostructures[J]. ACS Nano, 9, 6459-6464(2015).
[64] Zhang L, He D W, He J Q et al. Effect of strain on exciton dynamics in monolayer WS2[J]. Chinese Physics B, 28, 087201(2019).
[65] Aslan B, Deng M D, Brongersma M L et al. Strained bilayer WSe2 with reduced exciton-phonon coupling[J]. Physical Review B, 101, 115305(2020).
[66] Aslan B, Deng M D, Heinz T F. Strain tuning of excitons in monolayer WSe2[J]. Physical Review B, 98, 115308(2018).
[69] So J P, Kim H R, Baek H et al. Electrically driven strain-induced deterministic single-photon emitters in a van der Waals heterostructure[J]. Science Advances, 7, eabj3176(2021).
[71] Carrascoso F, Lin D Y, Frisenda R et al. Biaxial strain tuning of interlayer excitons in bilayer MoS2[J]. Journal of Physics: Materials, 3, 015003(2020).
[73] Peng R M, Ripin A, Ye Y S et al. Long-range transport of 2D excitons with acoustic waves[J]. Nature Communications, 13, 1334(2022).
[74] Rosati R, Brem S, Perea-Causín R et al. Strain-dependent exciton diffusion in transition metal dichalcogenides[J]. 2D Materials, 8, 015030(2021).
[75] Uddin S Z, Higashitarumizu N, Kim H et al. Enhanced neutral exciton diffusion in monolayer WS2 by exciton-exciton annihilation[J]. ACS Nano, 16, 8005-8011(2022).
[77] Zhang C D, Chuu C P, Ren X B et al. Interlayer couplings, moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers[J]. Science Advances, 3, e1601459(2017).
[79] Jin C H, Ma E Y, Karni O et al. Ultrafast dynamics in van der Waals heterostructures[J]. Nature Nanotechnology, 13, 994-1003(2018).
[80] Zhang C X, Gong C, Nie Y F et al. Systematic study of electronic structure and band alignment of monolayer transition metal dichalcogenides in van der Waals heterostructures[J]. 2D Materials, 4, 015026(2016).
[89] Li Z D, Lu X B, Cordovilla Leon D F et al. Interlayer exciton transport in MoSe2/WSe2 heterostructures[J]. ACS Nano, 15, 1539-1547(2021).
[91] Li Z D, Cordovilla Leon D F, Lee W et al. Dielectric engineering for manipulating exciton transport in semiconductor monolayers[J]. Nano Letters, 21, 8409-8417(2021).
[92] Shi B B, Tao G Y, Dai Y C et al. Exciton moiré potential in twisted WSe2 homobilayers modulated by electric field[J]. Acta Physica Sinica, 71, 177301(2022).
[94] Naik M H, Regan E C, Zhang Z C et al. Intralayer charge-transfer moiré excitons in van der Waals superlattices[J]. Nature, 609, 52-57(2022).
[96] Chen D X, Lian Z, Huang X et al. Tuning moiré excitons and correlated electronic states through layer degree of freedom[J]. Nature Communications, 13, 4810(2022).
[102] Liu W J, Ji Z R, Wang Y H et al. Generation of helical topological exciton-polaritons[J]. Science, 370, 600-604(2020).
Get Citation
Copy Citation Text
Yuexing Xia, Shuai Zhang, Keming Wu, Yiyang Gong, Shuai Yue, Xinfeng Liu. [J]. Chinese Journal of Lasers, 2023, 50(1): 0113009
Category: micro and nano optics
Received: Sep. 18, 2022
Accepted: Oct. 27, 2022
Published Online: Jan. 13, 2023
The Author Email: Yue Shuai (yueshuai@nanoctr.cn), Liu Xinfeng (liuxf@nanoctr.cn)