Journal of Synthetic Crystals, Volume. 50, Issue 1, 73(2021)

Preparation and Morphology Analysis of Cu2O Spherulites in DMF System

RAO Shengyuan1、*, QIU Zhihui1, XU Jinyan1, XU Xin2, ZHANG Qi2, LONG Ying1, and RUAN Qingfeng2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(25)

    [1] [1] SUN S D, ZHANG X J, YANG Q, et al. Cuprous oxide (Cu2O) crystals with tailored architectures: a comprehensive review on synthesis, fundamental properties, functional modifications and applications[J]. Progress in Materials Science, 2018, 96: 111-173.

    [2] [2] BRYAN A M, SANTINO L M, LU Y, et al. Conducting polymers for pseudocapacitive energy storage[J]. Chemistry of Materials, 2016, 28(17): 5989-5998.

    [3] [3] WANG W, FENG H M, LIU J G, et al. A photo catalyst of cuprous oxide anchored MXene nanosheet for dramatic enhancement of synergistic antibacterial ability[J]. Chemical Engineering Journal, 2020, 386: 124116.

    [4] [4] BRANDT I S, TUMELERO M A, PELEGRINI S, et al. Electrodeposition of Cu2O: growth, properties, and applications[J]. Journal of Solid State Electrochemistry, 2017, 21(7): 1999-2020.

    [5] [5] SULLIVAN I, ZOELLNER B, MAGGARD P A. Copper(I)-based p-type oxides for photoelectrochemical and photovoltaic solar energy conversion[J]. Chemistry of Materials, 2016, 28(17): 5999-6016.

    [6] [6] LUO J S, STEIER L, SON M K, et al. Cu2O nanowire photocathodes for efficient and durable solar water splitting[J]. Nano Letters, 2016, 16(3): 1848-1857.

    [7] [7] YAN Q H, ZHI N, YANG L, et al. A highly sensitive uric acid electrochemical biosensor based on a nano-cube cuprous oxide/ferrocene/uricase modified glassy carbon electrode[J]. Scientific Reports, 2020, 10: 10607.

    [8] [8] KUMAR R, RAI P, SHARMA A. Facile synthesis of Cu2O microstructures and their morphology dependent electrochemical supercapacitor properties[J]. RSC Advances, 2016, 6(5): 3815-3822.

    [9] [9] ZHOU Y, LIU G Q, ZHU X Y, et al. Cu2O quantum dots modified by RGO nanosheets for ultrasensitive and selective NO2 gas detection[J]. Ceramics International, 2017, 43(11): 8372-8377.

    [10] [10] TANG L, DU Y, KONG C, et al. One-pot synthesis of etched Cu2O cubes with exposed {110} facets with enhanced visible-light-driven photocatalytic activity[J]. Physical Chemistry Chemical Physics, 2015, 17(44): 29479-29482.

    [11] [11] TOE C Y, ZHENG Z K, WU H, et al. Photocorrosion of cuprous oxide in hydrogen production: rationalising self-oxidation or self-reduction[J]. Angewandte Chemie International Edition, 2018, 57(41): 13613-13617.

    [13] [13] WANG G, SUN H, DING L, et al. Growth of Cu particles on a Cu2O truncated octahedron: tuning of the Cu content for efficient glucose sensing[J]. Physical Chemistry Chemical Physics, 2015, 17(37): 24361-24369.

    [14] [14] JIANG D L, XING C S, LIANG X M, et al. Synthesis of cuprous oxide with morphological evolution from truncated octahedral to spherical structures and their size and shape-dependent photocatalytic activities[J]. Journal of Colloid and Interface Science, 2016, 461: 25-31.

    [16] [16] POLAT K. Cuprous oxide film sputtered on monolayer graphene for visible light sensitive heterogeneous photocatalysis[J]. Thin Solid Films, 2020, 709: 138254.

    [17] [17] ZHAO Y J, LI Y, WU Y B, et al. Preparation and photoelectric properties of praseodymium-doped cuprous oxide thin films[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(4): 3092-3100.

    [18] [18] VEIGA L S, GARATE O, TANCREDI P, et al. Performance of cuprous oxide mesoparticles with different morphologies as catalysts in a carbon nanotube ink for printing electrochemical sensors[J]. Journal of Alloys and Compounds, 2020, 847: 156449.

    [19] [19] CHANG Y, TEO J J, ZENG H C. Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres[J]. Langmuir, 2005, 21(3): 1074-1079.

    [20] [20] SHANG Y, GUO L. Facet-controlled synthetic strategy of Cu2O-based crystals for catalysis and sensing[J]. Advanced Science, 2015, 2(10): 1500140.

    [21] [21] LIU H R, MIAO W F, YANG S, et al. Controlled synthesis of different shapes of Cu2O via γ-irradiation[J]. Crystal Growth & Design, 2009, 9(4): 1733-1740.

    [23] [23] SUN S D, YANG Z M. Recent advances in tuning crystal facets of polyhedral cuprous oxide architectures[J]. RSC Adv, 2014, 4(8): 3804-3822.

    [24] [24] SIEGFRIED M, CHOI K S. Electrochemical crystallization of cuprous oxide with systematic shape evolution[J]. Advanced Materials, 2004, 16(19): 1743-1746.

    [25] [25] SUN S D, KONG C C, YANG S C, et al. Highly symmetric polyhedral Cu2O crystals with controllable-index planes[J]. CrystEngComm, 2011, 13(7): 2217.

    [26] [26] HUO W L, QI F, ZHANG X Y, et al. Ultralight alumina ceramic foams with single-grain wall using sodium dodecyl sulfate as long-chain surfactant[J]. Journal of the European Ceramic Society, 2016, 36(16): 4163-4170.

    [27] [27] SUI Y M, FU W Y, YANG H B, et al. Low temperature synthesis of Cu2O crystals: shape evolution and growth mechanism[J]. Crystal Growth & Design, 2010, 10(1): 99-108.

    [28] [28] GONG S Y, LI W H, XIE Z, et al. Low temperature decomposition of ozone by facilely synthesized cuprous oxide catalyst[J]. New Journal of Chemistry, 2017, 41(12): 4828-4834.

    Tools

    Get Citation

    Copy Citation Text

    RAO Shengyuan, QIU Zhihui, XU Jinyan, XU Xin, ZHANG Qi, LONG Ying, RUAN Qingfeng. Preparation and Morphology Analysis of Cu2O Spherulites in DMF System[J]. Journal of Synthetic Crystals, 2021, 50(1): 73

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 9, 2020

    Accepted: --

    Published Online: Apr. 15, 2021

    The Author Email: Shengyuan RAO (2774059266@qq.com)

    DOI:

    CSTR:32186.14.

    Topics