Acta Optica Sinica, Volume. 44, Issue 24, 2401008(2024)

Classification of Missed Layers in CALIPSO Products Based on U-Net Neural Network

Yilin Geng1, Lin Zang2,3、*, Feiyue Mao1, Weiwei Xu1, and Wei Gong4
Author Affiliations
  • 1School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, Hubei , China
  • 2Chinese Antarctic Center of Surveying and Mapping, Wuhan University, Wuhan 430079, Hubei , China
  • 3Key Laboratory of Polar Environmental Monitoring and Public Governance (Wuhan University), Ministry of Education, Wuhan 430079, Hubei , China
  • 4Electronic Information School, Wuhan University, Wuhan 430079, Hubei , China
  • show less
    Figures & Tables(8)
    Cloud-aerosol classification flow chart of space-borne Lidar based on 2DMHT-UNet
    Cases of daytime (2017-11-20T03:38:54ZD) and nighttime (2017-11-28T16:52:42ZN) cloud-aerosol classification over land. (a)(d) CALIPSO VFM cloud-aerosol classification; (b)(e) cloud-aerosol classification of U-Net classification model; (c)(f) difference between two classification results
    Cases of daytime (2017-11-05T07:40:57ZD) and nighttime (2017-11-02T17:56:13ZN) cloud-aerosol classification over sea. (a)(d) CALIPSO VFM cloud-aerosol classification; (b)(e) cloud-aerosol classification of U-Net classification model; (c)(f) difference between two classification results
    Case of 2DMHT-UNet cloud-aerosol classification over land (2017-11-20T03:38:54ZD). (a) Attenuation scattering ratio ASR; (b) CALIPSO VFM detection layer; (c) 2D-MHT detection layer; (d) differences between two layer detection algorithm; (e) Radar-Lidar joint detection cloud distribution; (f) CALIPSO VFM cloud-aerosol classification; (g) 2DMHT-UNet cloud-aerosol classification; (h) vertical distribution of cloud fraction
    Case of 2DMHT-UNet cloud-aerosol classification over land (2017-11-05T07:40:57ZD). (a) Attenuation scattering ratio ASR; (b) CALIPSO VFM detection layer; (c) 2D-MHT detection layer; (d) differences between two layer detection algorithm; (e) Radar-Lidar joint detection cloud distribution; (f) CALIPSO VFM cloud-aerosol classification; (g) 2DMHT-UNet cloud-aerosol classification; (h) vertical distribution of cloud fraction
    Verification of cloud classification accuracy of 2DMHT-UNet classification model based on Radar-Lidar joint observation. (a) Statistical comparison of cloud base height between CALIPSO VFM and Radar-Lidar over land; (b) statistical comparison of cloud base height between 2DMHT-UNet and Radar-Lidar over land; (c) statistical comparison of cloud base height between CALIPSO VFM and Radar-Lidar over sea; (d) statistical comparison of cloud base height between 2DMHT-UNet and Radar-Lidar over sea
    • Table 1. Source and parameters of the product used in the study

      View table

      Table 1. Source and parameters of the product used in the study

      SourceProductVersionParameter
      CALIPSOLevel 1B Profile4.10Total attenuated backscatter at 532 nm, perpendicular attenuated backscatter at 532 nm, attenuated backscatter at 1064 nm, molecular number density, ozone number density
      Level 2 5 km VFM4.20Aerosol and cloud type
      Radar-Lidar2B-CLDCLASS-LIDARP1_R05Cloud layer base height
    • Table 2. Performance evaluation of U-Net cloud-aerosol classification model

      View table

      Table 2. Performance evaluation of U-Net cloud-aerosol classification model

      PerformanceTypeLandSea
      DayNightAllDayNightAll
      A /%Comprehensive statistic90.288.889.492.388.890.2
      November90.088.789.392.089.290.4
      December90.488.989.592.688.490.0
      Pc /%Comprehensive statistic94.491.292.594.292.593.1
      November95.091.592.994.592.993.5
      December93.991.092.294.092.192.7
      Pa /%Comprehensive statistic82.882.282.486.974.280.3
      November81.681.581.585.074.379.8
      December84.082.983.388.574.280.8
      Rc /%Comprehensive statistic88.588.588.592.891.592.0
      November87.888.588.292.391.791.9
      December89.188.588.793.391.492.0
      Ra /%Comprehensive statistic92.989.490.891.480.686.0
      November93.489.190.991.581.686.8
      December92.489.690.791.479.785.2
    Tools

    Get Citation

    Copy Citation Text

    Yilin Geng, Lin Zang, Feiyue Mao, Weiwei Xu, Wei Gong. Classification of Missed Layers in CALIPSO Products Based on U-Net Neural Network[J]. Acta Optica Sinica, 2024, 44(24): 2401008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Atmospheric Optics and Oceanic Optics

    Received: Apr. 23, 2024

    Accepted: Jun. 18, 2024

    Published Online: Dec. 16, 2024

    The Author Email: Zang Lin (zanglin2018@whu.edu.cn)

    DOI:10.3788/AOS240893

    CSTR:32393.14.AOS240893

    Topics