Acta Photonica Sinica, Volume. 54, Issue 4, 0416001(2025)
Multifunctional Devices Based on Vanadium Dioxide-assisted Metamaterials
[1] YU Xianbin, LU Zhidong, LI Lianyi et al. Waveform design and signal processing for terahertz integrated sensing and communication[J]. Journal on Communications, 43, 76-88(2022).
[2] ZHANG Yuming, FAN Wenhui, WU Qi et al. Terahertz polarization multiplexing computer-generated holography based on all-dielectric metasurface[J]. Acta Photonica Sinica, 52, 0809001(2023).
[3] MU Ning, YANG Chuanyan, MA Kang et al. Terahertz technology applications in glioma diagnosis: from histological classification to molecular typing[J]. Acta Physica Sinica, 71, 77-93(2022).
[4] CHEN Tao, HUANG Fengyu, ZHONG Xin et al. Terahertz microfluidic sensor based on metamaterial absorbers with enhanced electromagnetic field interaction[J]. Acta Photonica Sinica, 50, 0116001(2021).
[5] LIAN J W, ANSAIR M, HU P et al. Wideband and high-efficiency parallel-plate Luneburg lens employing all-metal metamaterial for multibeam antenna applications[J]. IEEE Transactions on Antennas and Propagation, 71, 3193-3203(2023).
[6] CHENG H W, ZHU X X, CHENG X W et al. Mechanical metamaterials made of freestanding quasi-BCC nanolattices of gold and copper with ultra-high energy absorption capacity[J]. Nature Communications, 14, 1243(2023).
[7] DU Yulin, XIE Xinrong, CHEN Hongsheng et al. Hierarchical spoof plasmonic structures enhanced terahertz photoconductive antenna (invited)[J]. Acta Photonica Sinica, 52, 116-125(2023).
[8] MISHRA R K, DATAR S. Design, simulation, and fabrication of high-bandwidth metamaterial microwave absorber (MMA) in X-band for EMI shielding and stealth capability[J]. Journal of Electronic Materials, 52, 2626-2644(2023).
[9] WU G Z, LI C, WANG D et al. Vanadium dioxide-based ultra-broadband metamaterial absorber for terahertz waves[J]. Optical Materials, 147, 114667(2024).
[10] FU C F, DONG S H, ZHANG L et al. Dual-band and dynamic regulated terahertz linear polarization converter based on graphene metasurface[J]. Optics Communications, 529, 129042(2023).
[11] ZHANG P Y, CHEN G Q, HOU Z Y et al. Ultra-broadband tunable terahertz metamaterial absorber based on double-layer vanadium dioxide square ring arrays[J]. Micromachines, 13, 669(2022).
[12] CAO J H, RAO Z M. Multi-mode polarization converter based on dirac semimetals and vanadium dioxide metamaterial[J]. IEEE Photonics Technology Letters, 35, 1311-1314(2023).
[13] ZOU M Q, SU M Y, YU H. Ultra-broadband and wide-angle terahertz polarization converter based on symmetrical anchor-shaped metamaterial[J]. Optical Materials, 107, 110062(2020).
[14] WU L Q, LIN Y S. Flexible terahertz metamaterial filter with high transmission intensity and large tuning range for optical communication application[J]. Physica E: Low-dimensional Systems and Nanostructures, 146, 115563(2023).
[15] WU J W, YUAN T T, LIU J J et al. Terahertz metamaterial sensor with ultra-high sensitivity and tunability based on photosensitive semiconductor GaAs[J]. IEEE Sensors Journal, 22, 15961-15966(2022).
[16] LI D X, LIN S J, HU F R et al. Metamaterial terahertz sensor for measuring thermal-induced denaturation temperature of insulin[J]. IEEE Sensors Journal, 20, 1821-1828(2019).
[17] WANG J, WAN X G, JIANG Y N. Tunable triple-band terahertz absorber based on bulk-Dirac-semimetal metasurface[J]. IEEE Photonics Journal, 13, 1-5(2021).
[18] PAN W, LI Y R, ZHANG Z et al. Design and analysis of a multi-band and dual-functional terahertz wave polarization converter based on asymmetric cross-shaped metasurface[J]. Optics Communications, 530, 129171(2023).
[19] CAO T N, NGUYEN M T, NGUYEN N H et al. Numerical design of a high efficiency and ultra-broadband terahertz cross-polarization converter[J]. Materials Research Express, 8, 065801(2021).
[20] ZHANG Y B, WU P H, ZOU Z G et al. Study on temperature adjustable terahertz metamaterial absorber based on vanadium dioxide[J]. IEEE Access, 8, 85154-85161(2020).
[21] SASAKI T, NISHIE Y, KAMBAYASHI M et al. Active terahertz polarization converter using a liquid crystal-embedded metal mesh[J]. IEEE Photonics Journal, 11, 1-7(2019).
[22] LIU D M, TU J Y, WANG D L et al. Broadband, polarization-insensitive and temperature-independent metamaterial absorber based on graphene hybrid water in terahertz domain[J]. Optical and Quantum Electronics, 56, 1144(2024).
[23] PARRA J, IVANOVA T, MENGHINI M et al. All-optical hybrid VO2/Si waveguide absorption switch at telecommunication wavelengths[J]. Journal of Lightwave Technology, 39, 2888-2894(2021).
[24] YANG W C, ZHOU C Y, XUE Q et al. Millimeter-wave frequency-reconfigurable metasurface antenna based on vanadium dioxide films[J]. IEEE Transactions on Antennas and Propagation, 69, 4359-4369(2021).
[25] CASU E A, MULLER A A, CAVALIERI M et al. A reconfigurable inductor based on vanadium dioxide insulator-to-metal transition[J]. IEEE Microwave and Wireless Components Letters, 28, 795-797(2018).
[26] ZHANG H J, LIU F, MA Y N et al. Tunable and switchable terahertz absorber based on photoconductive silicon and vanadium dioxide[J]. Optics & Laser Technology, 163, 109329(2023).
[27] GAO P, CHEN C, DAI Y W et al. Broadband terahertz polarization converter/absorber based on the phase transition properties of vanadium dioxide in a reconfigurable metamaterial[J]. Optical and Quantum Electronics, 55, 380(2023).
[28] WEI H R, GE H H, ZHAO T T et al. Vanadium dioxide thin films-assisted terahertz meta-surface for simultaneous absorption, polarization conversion bi-functional switching, and wavefront operation[J]. Results in Physics, 53, 106970(2023).
[29] HHUANG J, LI J N, YANG Y et al. Active controllable dual broadband terahertz absorber based on hybrid metamaterials with vanadium dioxide[J]. Optics Express, 28, 7018-7027(2020).
[30] WANG K, RUI Y, LI J. Vanadium-dioxide-assisted multifunctional switchable terahertz metamaterial devices[J]. Journal of the Optical Society of America B, 41, 2469-2479(2024).
[31] QIU Y, YAN D X, FENG Q Y et al. Vanadium dioxide-assisted switchable multifunctional metamaterial structure[J]. Optics Express, 30, 26544-26556(2022).
[32] ZHANG Y, XUE W R, DU Y D et al. Bi-functional metasurface for broadband absorption and broadband cross-polarization conversion based on vanadium dioxide[J]. Optical Materials, 149, 114984(2024).
[33] ZHEN P, ZHENG Z S, YU Z S et al. Broadband absorption and polarization conversion switchable terahertz metamaterial device based on vanadium dioxide[J]. Optics & Laser Technology, 157, 108723(2023).
[34] LIAN X J, MA M T, TIAN J P et al. Vanadium dioxide based bifunctional metasurface for broadband absorption and cross-polarization conversion in THz range[J]. AEU-International Journal of Electronics and Communications, 170, 154784-154784(2023).
[35] MA M T, LIAN X J, TIAN J P et al. Dual function tunable THz metamaterial device possessing broadband absorption and polarization conversion[J]. AEU-International Journal of Electronics and Communications, 163, 154602-154602(2023).
[36] FENG Q Y, QIU G H, YAN D X et al. Wide and narrow band switchable bi-functional metamaterial absorber based on vanadium dioxide[J]. Chinese Optics, 15, 387-403(2022).
[37] JING H H, KANG J F, SONG C G et al. Bifunctional switchable terahertz metamaterial in the same operating band based on VO2[J]. Optics Communications, 552, 130047(2024).
[38] SONG Z Y, ZHANG J. Achieving broadband absorption and polarization conversion with a vanadium dioxide metasurface in the same terahertz frequencies[J]. Optics Express, 28, 12487-12497(2020).
[39] NIU J H, YAO Q Y, MO W et al. Switchable bi-functional metamaterial based on vanadium dioxide for broadband absorption and broadband polarization in terahertz band[J]. Optics Communications, 527, 128953(2023).
Get Citation
Copy Citation Text
Sha LI, Yingjue CAO, Xiangjun LI, Le ZHANG, Jining LI, Dexian YAN. Multifunctional Devices Based on Vanadium Dioxide-assisted Metamaterials[J]. Acta Photonica Sinica, 2025, 54(4): 0416001
Category:
Received: Oct. 5, 2024
Accepted: Jan. 6, 2025
Published Online: May. 15, 2025
The Author Email: Dexian YAN (yandexian1991@163.com)