Laser & Optoelectronics Progress, Volume. 58, Issue 16, 1630005(2021)

Regression Prediction of Soil Available Nitrogen Near-Infrared Spectroscopy Based on Boosting Algorithm

Yalu Han, Shaowen Li*, Wenrui Zheng, Shengqun Shi, Xianzhi Zhu, and Xiu Jin
Author Affiliations
  • School of Information & Computer, Anhui Agricultural University, Hefei, Anhui 230036, China
  • show less
    Figures & Tables(12)
    Indoor spectrum acquisition system
    Boosting algorithm classification
    Schematic of AdaBoost regression
    Technical route analysis of near-infrared hyperspectral characteristics of available nitrogen in soil
    Contrast of spectra before and after preprocess. (a) Original spectra; (b) SG; (c) LG; (d) FD; (e) SNV; (f) SG+SNV; (g) SG+LG; (h) SG+FD
    R2 and RPD values of regression models with testing obtained by different pretreatment methods. (a) R2; (b) RPD
    R2, RMSE, and RPD values of the testing sets of different algorithms. (a) R2;(b) RMSE; (c) RPD
    Optimal combination of wavelength points selected by different algorithms
    Measured and predicted values of PSO-AdaBoost model based on SNV in prediction set
    • Table 1. Statistical parameters of soil available nitrogen content

      View table

      Table 1. Statistical parameters of soil available nitrogen content

      DatasetNumber of samplesMax /(mg·kg-1)Min /(mg·kg-1)Median /(mg·kg-1)Mean /(mg·kg-1)Standard /(mg·kg-1)
      Total set188731.58419.32132.644179.083144.398
      Training set131731.58419.32130.732179.440148.217
      Testing set57687.14867.62137.816178.255135.211
    • Table 2. Influence of different pretreatment methods on regression model

      View table

      Table 2. Influence of different pretreatment methods on regression model

      Preprocess methodRegression modelTraining setTesting setParameter
      R2RPDR2RPDNumber of latent variables
      SGPLSR0.923.620.8943.0816
      LGPLSR0.944.020.8983.1411
      FDPLSR0.954.390.7181.886
      SNVPLSR0.964.870.8572.6411
      SG+SNVPLSR0.944.160.8452.5411
      SG+LGPLSR0.954.250.9163.4514
      SG+FDPLSR0.882.870.7381.956
      Preprocess methodRegression modelTraining setTesting setParameter
      R2RPDR2RPDLearning rate/number of estimators
      SGGBRT0.9928.270.6101.600.4/400
      LGGBRT0.9928.270.5081.430.2/200
      FDGBRT0.9928.270.6681.730.4/200
      Preprocess methodRegression modelTraining setTesting setParameter
      R2RPDR2RPDLearning rate/number of estimators
      SNVGBRT0.9934.960.9153.430.2/100
      SG+SNVGBRT0.9915.130.9103.330.4/100
      SG+LGGBRT0.9928.270.5731.530.4/100
      SG+FDGBRT0.9922.270.8983.140.1/300
      SGAdaBoost0.975.430.6441.680.4/100
      LGAdaBoost0.954.680.5761.540.4/200
      FDAdaBoost0.9923.740.5731.530.1/200
      SNVAdaBoost0.9912.140.9213.430.2/100
      SG+SNVAdaBoost0.9920.070.9123.370.1/200
      SG+LGAdaBoost0.964.750.3191.210.3/200
      SG+FDAdaBoost0.9928.270.8762.840.1/200
      SGXGBoost0.9928.240.7451.980.1/300
      LGXGBoost0.9928.240.7391.950.1/300
      FDXGBoost0.9928.260.4701.150.2/100
      SNVXGBoost0.9928.210.9123.370.4/100
      SG+SNVXGBoost0.9925.260.9083.310.2/100
      SG+LGXGBoost0.9928.250.7451.980.1/300
      SG+FDXGBoost0.9928.260.8352.460.4/100
      SGLightGBM0.792.210.810.1/400
      LGLightGBM0.751.990.690.4/400
      FDLightGBM0.9919.600.5211.440.4/200
      SNVLightGBM0.9926.870.8492.570.4/100
      SG+SNVLightGBM0.9925.440.8572.650.4/100
      SG+LGLightGBM0.792.190.680.3/400
      SG+FDLightGBM0.9922.620.6951.810.1/200
    • Table 3. Analysis results of quantitative models with different variables based on the spectral data processed by SNV and SG+SNV

      View table

      Table 3. Analysis results of quantitative models with different variables based on the spectral data processed by SNV and SG+SNV

      Preprocess methodAlgorithmWavelength range /nmNumber of variablesTraining setTesting setParameter
      R2RPDR2RPDLearning rate/number of estimators
      SNVAdaBoost350--165513050.9912.140.9213.430.2/100
      SNVGBRT350--165513050.9934.960.9153.430.2/100
      SNVXGBoost350--165513050.9928.210.9123.370.4/100
      SNVRF-GBRT600--9992000.9928.270.9223.570.4/300
      SNVPSO-GBRT602--9992020.9928.270.9243.630.2/400
      SNVGA-GBRT600--9991840.9928.270.9323.830.4/300
      SNVSA-GBRT602--9982060.9928.270.9414.110.4/300
      SNVGGA-GBRT601--9992020.9928.270.9193.520.2/400
      SNVRF-AdaBoost600--9992000.9921.240.9394.060.2/100
      SNVPSO-AdaBoost602--9992020.9918.170.9444.240.1/100
      SNVGA- AdaBoost600--9991840.9912.950.9404.090.4/100
      SNVSA-AdaBoost602--9982060.9924.030.9373.960.2/100
      SNVGGA-AdaBoost601--9992020.9924.210.9434.200.4/100
      SNVRF-XGBoost600--9992000.9928.170.9293.760.2/100
      SNVPSO-XGBoost602--9992020.9928.250.8213.360.2/400
      SNVGA-XGBoost600--9991840.9928.220.8862.960.3/100
      SNVSA-XGBoost602--9982060.9920.210.8342.460.1/200
      SNVGGA-XGBoost601--9992020.9927.960.8712.780.1/200
      SG+SNVAdaBoost350--165513050.9920.070.9123.370.1/200
      SG+SNVGBRT350--165513050.9915.130.9103.330.4/100
      SG+SNVXGBoost350--165513050.9925.260.9083.310.2/100
      SG+SNVRF-GBRT603--9992020.9928.270.9193.530.2/200
      SG+SNVPSO-GBRT607--9992010.9928.270.9133.390.1/300
      SG+SNVGA-GBRT604--9992090.9928.270.9273.690.4/100
      Preprocess methodAlgorithmWavelength range /nmNumber of variablesTraining setTesting setParameter
      R2RPDR2RPDLearning rate/number of estimators
      SG+SNVSA-GBRT607--9982060.9928.270.9263.680.4/200
      SG+SNVGGA-GBRT607--9992000.9928.270.9003.170.3/400
      SG+SNVRF-AdaBoost603--9992020.9912.120.9193.510.3/100
      SG+SNVPSO-AdaBoost607--9992010.9915.410.9153.430.4/100
      SG+SNVGA-AdaBoost604--9992090.9924.160.9223.590.2/100
      SG+SNVSA-AdaBoost607--9982060.9920.240.9293.760.1/100
      SG+SNVGGA-AdaBoost607--9992000.9912.450.9243.640.3/300
      SG+SNVRF-XGBoost600--9992000.9928.180.8983.140.4/200
      SG+SNVPSO-XGBoost602--9992020.9927.450.8882.990.4/100
      SG+SNVGA-XGBoost600--9991840.9924.220.8852.950.3/100
      SG+SNVSA-XGBoost602--9982060.9927.310.8832.920.4/100
      SG+SNVGGA-XGBoost601--9992020.9924.840.8822.910.3/100
    Tools

    Get Citation

    Copy Citation Text

    Yalu Han, Shaowen Li, Wenrui Zheng, Shengqun Shi, Xianzhi Zhu, Xiu Jin. Regression Prediction of Soil Available Nitrogen Near-Infrared Spectroscopy Based on Boosting Algorithm[J]. Laser & Optoelectronics Progress, 2021, 58(16): 1630005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Spectroscopy

    Received: Aug. 28, 2020

    Accepted: Sep. 20, 2020

    Published Online: Aug. 16, 2021

    The Author Email: Shaowen Li (shwli@ahau.edu.cn)

    DOI:10.3788/LOP202158.1630005

    Topics