Journal of Synthetic Crystals, Volume. 50, Issue 8, 1457(2021)

Structural Characterization of Copper (Ⅰ) Complex Based on Triphenylphosphine and Thioalcohol Mixed Ligands

YAN Li and PENG Shaochun
Author Affiliations
  • [in Chinese]
  • show less
    References(22)

    [4] [4] XU L X, WANG T Q, LIU X F, et al. The heteroleptic Cu(Ⅰ) photosensitizer-containing 3, 8-disubstituted phenanthroline: synthesis, photophysical properties and photocatalytic hydrogen evolution from water[J]. European Journal of Inorganic Chemistry, 2020, 2020(45): 4278-4283.

    [5] [5] KOBAYASHI A, EHARA T, YOSHIDA M, et al. Quantitative thermal synthesis of Cu(Ⅰ) coordination polymers that exhibit thermally activated delayed fluorescence[J]. Inorganic Chemistry, 2020, 59(14): 9511-9520.

    [6] [6] BARANOV A Y, BEREZIN A S, SAMSONENKO D G, et al. New Cu(Ⅰ) halide complexes showing TADF combined with room temperature phosphorescence: the balance tuned by halogens[J]. Dalton Transactions, 2020, 49(10): 3155-3163.

    [7] [7] SAGA M, SAKANE G, YAMAZAKI S, et al. Fluorescent ligand design for mononuclear copper(Ⅰ) complex fluorescence in aqueous solution[J]. Inorganica Chimica Acta, 2020, 502: 119368.

    [8] [8] DU B S, LIAO J L, HUANG M H, et al. Os(Ⅱ) based green to red phosphors: a great prospect for solution-processed, highly efficient organic light-emitting diodes[J]. Advanced Functional Materials, 2012, 22(16): 3491-3499.

    [9] [9] CHOU P T, CHI Y, CHUNG M W, et al. Harvesting luminescence via harnessing the photophysical properties of transition metal complexes[J]. Coordination Chemistry Reviews, 2011, 255(21/22): 2653-2665.

    [10] [10] LEITL M J, KRYLOVA V A, DJUROVICH P I, et al. Phosphorescence versus thermally activated delayed fluorescence. Controlling singlet-triplet splitting in brightly emitting and sublimable Cu(Ⅰ) compounds[J]. Journal of the American Chemical Society, 2014, 136(45): 16032-16038.

    [11] [11] DI D W, ROMANOV A S, YANG L, et al. High-performance light-emitting diodes based on carbene-metal-amides[J]. Science, 2017, 356(6334): 159-163.

    [12] [12] CHEN J L, CAO X F, WANG J Y, et al. Synthesis, characterization, and photophysical properties of heteroleptic copper(Ⅰ) complexes with functionalized 3-(2'-pyridyl)-1, 2, 4-triazole chelating ligands[J]. Inorganic Chemistry, 2013, 52(17): 9727-9740.

    [13] [13] ZHANG Q, ZHOU Q, CHENG Y, et al. Highly efficient green phosphorescent organic light-emitting diodes based on CuI complexes[J]. Advanced Materials, 2004, 16(5): 432-436.

    [14] [14] CHEN X L, YU R M, ZHANG Q K, et al. Rational design of strongly blue-emitting cuprous complexes with thermally activated delayed fluorescence and application in solution-processed OLEDs[J]. Chemistry of Materials, 2013, 25(19): 3910-3920.

    [15] [15] ZHANG J, DUAN C B, HAN C M, et al. Balanced dual emissions from tridentate phosphine-coordinate copper(Ⅰ) complexes toward highly efficient yellow OLEDs[J]. Advanced Materials, 2016, 28(28): 5975-5979.

    [16] [16] SHELDRICK G M, SHELXS-97 and SHELXL-97, software for crystal structure analysis, siemens analytical X-ray instruments ins[M]. Wisconsin, Madison, USA, 1997.

    [17] [17] SHELDRICK G M, SHELXTL NT version 5.1. Program for solution and refinement of crystal structures[M]. University of Gttingen, Germany, 1997.

    [18] [18] LOBANA T S, KHANNA S, HUNDAL G, et al. Mono- and di-nuclear complexes of thiosemicarbazones with copper(Ⅰ): synthesis, spectroscopy and structures[J]. Polyhedron, 2009, 28(18): 3899-3906.

    [19] [19] LONG J, BASALOV I V, LYSSENKO K A, et al. Synthesis, structure, magnetic and photoluminescent properties of dysprosium(Ⅲ) schiff base single-molecule magnets: investigation of the relaxation of the magnetization[J]. Chemistry-an Asian Journal, 2020, 15(17): 2706-2715.

    [20] [20] MARIA MARON' A, CHOROBA K, PEDZINSKI T, et al. Towards better understanding of the photophysics of platinum(ii) coordination compounds with anthracene- and pyrene-substituted 2, 6-bis(thiazol-2-yl)pyridines[J]. Dalton Transactions, 2020, 49(38): 13440-13448.

    [21] [21] QIU Q M, LIU M, LI Z F, et al. Synthesis, structure, terahertz spectroscopy and luminescent properties of copper(Ⅰ) complexes with mercaptan ligands and triphenylphosphine[J]. Journal of Molecular Structure, 2014, 1062: 125-132.

    [22] [22] LOBANA T S, KHANNA S, HUNDAL G, et al. Mono- and di-nuclear complexes of thiosemicarbazones with copper(Ⅰ): synthesis, spectroscopy and structures[J]. Polyhedron, 2009, 28(18): 3899-3906.

    [23] [23] LONG J, BASALOV I V, LYSSENKO K A, et al. Synthesis, structure, magnetic and photoluminescent properties of dysprosium(Ⅲ) schiff base single-molecule magnets: investigation of the relaxation of the magnetization[J]. Chemistry-an Asian Journal, 2020, 15(17): 2706-2715.

    [24] [24] MARIA MARON' A, CHOROBA K, PEDZINSKI T, et al. Towards better understanding of the photophysics of platinum(ii) coordination compounds with anthracene- and pyrene-substituted 2, 6-bis(thiazol-2-yl)pyridines[J]. Dalton Transactions, 2020, 49(38): 13440-13448.

    [25] [25] QIU Q M, LIU M, LI Z F, et al. Synthesis, structure, terahertz spectroscopy and luminescent properties of copper(Ⅰ) complexes with mercaptan ligands and triphenylphosphine[J]. Journal of Molecular Structure, 2014, 1062: 125-132.

    Tools

    Get Citation

    Copy Citation Text

    YAN Li, PENG Shaochun. Structural Characterization of Copper (Ⅰ) Complex Based on Triphenylphosphine and Thioalcohol Mixed Ligands[J]. Journal of Synthetic Crystals, 2021, 50(8): 1457

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 2, 2021

    Accepted: --

    Published Online: Nov. 6, 2021

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics