Chinese Journal of Liquid Crystals and Displays, Volume. 37, Issue 3, 395(2022)

Low-light level image enhancement algorithm based on double-branch pyramid model

CHEN Qing-jiang*, GU Yuan, and LI Jin-yang
Author Affiliations
  • [in Chinese]
  • show less
    References(18)

    [1] [1] HUMMEL R. Image enhancement by histogram transformation [J]. Computer Graphics and Image Processing, 1977, 6(2): 184-195.

    [2] [2] PIZER S M, AMBURN E P, AUSTIN J D, et al. Adaptive histogram equalization and its variations [J]. Computer Vision, Graphics, and Image Processing, 1987, 39(3): 355-368.

    [3] [3] LAND E H. The retinex theory of color vision [J]. Scientific American, 1977, 237(6): 108-128.

    [4] [4] JOBSON D J, RAHMAN Z, WOODELL G A. Properties and performance of a center/surround retinex [J]. IEEE Transactions on Image Processing, 1997, 6(3): 451-462.

    [7] [7] SINGH S, GUPTA D. Detail enhanced feature-level medical image fusion in decorrelating decomposition domain [J]. IEEE Transactions on Instrumentation and Measurement, 2020, 70: 4502009.

    [8] [8] TAO L, ZHU C, XIANG G Q, et al. LLCNN: a convolutional neural network for low-light image enhancement [C]. Proceedings of 2017 IEEE Visual Communications and Image Processing (VCIP). St. Petersburg: IEEE, 2017: 1-4.

    [9] [9] LI C Y, GUO J C, PORIKLI F, et al. LightenNet: a convolutional neural network for weakly illuminated image enhancement [J]. Pattern Recognition Letters, 2018, 104: 15-22.

    [10] [10] JIANG Y F, GONG X Y, LIU D, et al. EnlightenGAN: deep light enhancement without paired supervision [J]. IEEE Transactions on Image Processing, 2021, 30: 2340-2349.

    [11] [11] HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353.

    [12] [12] LI H C, XIONG P F, AN J, et al. Pyramid attention network for semantic segmentation [J]. arXiv: 1805.10180, 2018.

    [13] [13] SIMONYAN K, ZISSERMAN A.Very deep convolutional networks for large-scale image recognition [J]. arXiv: 1409.1556, 2015.

    [14] [14] YING Z Q, LI G, GAO W. A bio-inspired multi-exposure fusion framework for low-light image enhancement [J]. arXiv: 1711.00591, 2017.

    [15] [15] CHEN X Y, WANG S A. Superpixel segmentation based on Delaunay triangulation [C]//Proceedings of the 23rd International Conference on Mechatronics and Machine Vision in Practice (M2VIP). Nanjing, China: IEEE, 2016: 1-6.

    [16] [16] MANNOS J, SAKRISON D. The effects of a visual fidelity criterion of the encoding of images [J]. IEEE Transactions on Information Theory, 1974, 20(4): 525-536.

    [17] [17] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity [J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.

    [18] [18] CHEN C, CHEN Q F, XU J, et al. Learning to see in the dark [C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 3291-3300.

    [19] [19] LEE C, LEE C, KIM C S. Contrast enhancement based on layered difference representation [C]//Proceedings of the 19th IEEE International Conference on Image Processing. Orlando: IEEE, 2012: 965-968.

    Tools

    Get Citation

    Copy Citation Text

    CHEN Qing-jiang, GU Yuan, LI Jin-yang. Low-light level image enhancement algorithm based on double-branch pyramid model[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(3): 395

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 25, 2021

    Accepted: --

    Published Online: Jul. 21, 2022

    The Author Email: CHEN Qing-jiang (qjchen66xytu@126.com)

    DOI:10.37188/cjlcd.2021-0221

    Topics