Optics and Precision Engineering, Volume. 31, Issue 7, 1074(2023)

Pneumonia aided diagnosis model based on dense dual-stream focused network

Tao ZHOU1,3, Xinyu YE1,3、*, Huiling LU2, Yuncan LIU1,3, and Xiaoyu CHANG1,3
Author Affiliations
  • 1College of Computer Science and Engineering, North Minzu University, Yinchuan75002, China
  • 2College of Science, Ningxia Medical University, Yinchuan750003, China
  • 3Key Laboratory of Image and Graphics Intelligent Processing of State Ethnic Affairs Commission, North Minzu University, Yinchuan750021, China
  • show less
    Figures & Tables(13)
    Overall framework of DDSF-Net
    Dual-stream dense block (single layer structure)
    Middle feature maps of focus block
    Heat map of each models in pneumonia X-ray images
    ROC curves of each model in pneumonia X-ray dataset
    PR curves of each model in pneumonia X-ray dataset
    ROC curves for each model in small target pneumonia X-ray dataset
    • Table 1. Comparison of results of ablation experiments

      View table
      View in Article

      Table 1. Comparison of results of ablation experiments

      模 型参数量M)计算量G)

      训练

      时间/s

      准确率/%精确率/%召回率/%F1分数/%AUC值/%
      DenseNet121460.885.73216 67093.44±2.196.04±1.892.69±1.694.33±1.793.60±2.0
      实验一58.255.56316 59194.63±1.596.46±1.294.60±1.195.41±1.294.64±1.3
      实验二81.194.38215 93496.35±1.997.07±1.796.74±1.696.90±1.796.27±2.0
      实验二76.314.06815 67296.89±1.897.41±1.597.30±1.497.36±1.596.79±1.8
      实验三76.314.14915 72998.01±1.198.53±0.898.09±0.998.31±0.897.99±1.0
    • Table 2. Specific results of each model in pneumonia X-ray dataset

      View table
      View in Article

      Table 2. Specific results of each model in pneumonia X-ray dataset

      模 型参数量(M)计算量(G)

      训练

      时间/s

      准确率/%精确率/%召回率/%F1分数/%AUC值/%
      VGG1951 096.0939.29426 61389.07±2.494.81±2.286.16±2.990.28±2.289.69±2.8
      ResNet1018324.2815.66421 29191.32±1.593.46±1.591.68±1.792.56±1.391.24±1.9
      DenseNet121460.885.73216 67093.44±2.196.04±1.892.69±1.694.33±1.793.60±2.0
      SeResNet1018360.4715.69222 41393.83±1.395.12±1.294.38±1.594.75±1.393.72±1.4
      EfficientNetb01830.590.02715 15591.52±2.594.61±2.490.78±3.192.65±2.691.68±2.8
      EfficientNetb411133.910.06819 29993.97±1.996.18±1.793.48±1.594.81±1.794.08±1.9
      RegNetx0321872.663.95518 49294.63±1.696.01±1.594.83±1.695.42±1.894.59±1.7
      SwinTransformer14411.7518.83624 32795.29±2.195.75±2.096.29±2.296.02±2.195.08±2.3
      NATransformer19240.639.30819 52995.63±1.896.71±1.695.84±1.996.27±1.795.58±1.9
      DDSF-Net76.314.14915 72998.01±1.198.53±0.898.09±0.998.31±0.897.99±1.0
    • Table 3. Specifications of different models in small target pneumonia X-ray dataset

      View table
      View in Article

      Table 3. Specifications of different models in small target pneumonia X-ray dataset

      模 型准确率精确率召回率F1AUC值
      ResNet101886.2490.0088.7389.3685.16
      DenseNet121488.0792.0389.4490.7287.48
      RegNetx0321890.8394.2091.5592.8690.51
      NATransformer1992.6693.7595.0794.4191.61
      DDSF-Net95.4197.1495.7796.4595.26
    • Table 4. Deep learning model for diagnosing COVID-19 X-ray images

      View table
      View in Article

      Table 4. Deep learning model for diagnosing COVID-19 X-ray images

      模 型敏感度特异度准确率精确率F1
      VGG19582.9693.9692.33--
      Covid-caps390.0095.8095.70--
      DCNN697.9191.87-93.36-
      GSEN2093.4098.0895.6092.7395.50
      DDSF-Net98.3698.0898.2398.0898.08
    • Table 5. Deep learning model for diagnosing pneumonia X-ray images

      View table
      View in Article

      Table 5. Deep learning model for diagnosing pneumonia X-ray images

      模 型敏感度特异度准确率AUC
      DenseNet121491.0087.0088.1390.00
      EfficientNetb51183.0092.0094.6495.00
      Covid-caps390.0095.0095.0097.00
      ViT-B322196.0096.0096.0099.10
      DDSF-Net98.5598.9798.7199.53
    • Table 6. Deep learning model for diagnosing pneumonia X-ray images

      View table
      View in Article

      Table 6. Deep learning model for diagnosing pneumonia X-ray images

      模 型准确率AUC
      Dark COVID-Net130.870 2-
      AF-CAP220.991 60.988 0
      DDSF-Net0.996 30.991 7
    Tools

    Get Citation

    Copy Citation Text

    Tao ZHOU, Xinyu YE, Huiling LU, Yuncan LIU, Xiaoyu CHANG. Pneumonia aided diagnosis model based on dense dual-stream focused network[J]. Optics and Precision Engineering, 2023, 31(7): 1074

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Sep. 28, 2020

    Accepted: --

    Published Online: Apr. 28, 2023

    The Author Email: Xinyu YE (3303626778@qq.com)

    DOI:10.37188/OPE.20233107.1074

    Topics