Laser & Optoelectronics Progress, Volume. 60, Issue 19, 1927001(2023)
Optomechanically Induced Amplification and Slow Light in Coupled Cavities
[1] Aspelmeyer M, Kippenberg T J, Marquardt F. Cavity optomechanics[J]. Review of Modern Physics, 86, 1391(2014).
[2] Kippenberg T J, Vahala K J. Cavity optomechanics: back-action at the mesoscale[J]. Science, 321, 1172-1176(2008).
[3] Marquardt F, Clerk A A, Girvin S M. Quantum theory of optomechanical cooling[J]. Journal of Modern Optics, 55, 3329-3338(2008).
[4] Verlot P, Tavernarakis A, Briant T et al. Backaction amplification and quantum limits in optomechanical measurements[J]. Physical Review Letters, 104, 133602(2010).
[5] Mahajan S, Kumar T, Bhattacherjee A B et al. Ground-state cooling of a mechanical oscillator and detection of a weak force using a Bose-Einstein condensate[J]. Physical Review A, 87, 013621(2013).
[6] Yan X B. Optomechanically induced optical responses with non-rotating wave approximation[J]. European Journal of Physics, 54, 035401(2021).
[7] Gigan S, Böhm H R, Paternostro M et al. Self-cooling of a micromirror by radiation pressure[J]. Nature, 444, 67-70(2006).
[8] Arcizet O, Briant T, Heidmann A et al. Beating quantum limits in an optomechanical sensor by cavity detuning[J]. Physical Review A, 73, 033819(2006).
[9] Kippenberg T J, Rokhsari H, Carmon T et al. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity[J]. Physical Review Letters, 95, 033901(2005).
[10] Tomes M, Carmon T. Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates[J]. Physical Review Letters, 102, 113601(2009).
[11] Lin Q, Rosenberg J, Chang D et al. Force-mediated parametric generation in nano-optomechanical structures[C], QTuA1(2010).
[12] Regal C A, Teufel J D, Lehnert K W. Measuring nanomechanical motion with a microwave cavity interferometer[J]. Nature Physics, 4, 555-560(2008).
[13] Teufel J D, Li D L, Allman M S et al. Circuit cavity electromechanics in the strong-coupling regime[J]. Nature, 471, 204-208(2011).
[14] Thompson J D, Zwickl B M, Jayich A M et al. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane[J]. Nature, 452, 72-75(2008).
[15] Jayich A M, Sankey J C, Zwickl B M et al. Dispersive optomechanics: a membrane inside a cavity[J]. New Journal of Physics, 10, 095008(2008).
[16] Sankey J C, Yang C, Zwickl B M et al. Strong and tunable nonlinear optomechanical coupling in a low-loss system[J]. Nature Physics, 6, 707-712(2010).
[17] Karuza M, Biancofiore C, Bawaj M et al. Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature[J]. Physical Review A, 88, 013804(2013).
[18] Yang J Y, Wang D Y, Bai C H et al. Ground-state cooling of mechanical oscillator via quadratic optomechanical coupling with two coupled optical cavities[J]. Optics Express, 27, 22855-22867(2019).
[19] Feng J S, Tan L, Gu H Q et al. Auxiliary-cavity-assisted ground-state cooling of an optically levitated nanosphere in the unresolved-sideband regime[J]. Physical Review A, 96, 063818(2017).
[20] Liu Y C, Xiao Y F, Luan X S et al. Coupled cavities for motional ground-state cooling and strong optomechanical coupling[J]. Physical Review A, 91, 033818(2015).
[21] Marquardt F, Chen J P, Clerk A A et al. Quantum theory of cavity-assisted sideband cooling of mechanical motion[J]. Physical Review Letters, 99, 093902(2007).
[22] Wilson-Rae I, Nooshi N, Zwerger W et al. Theory of ground state cooling of a mechanical oscillator using dynamical backaction[J]. Physical Review Letters, 99, 093901(2007).
[23] He B, Yang L, Lin Q et al. Radiation pressure cooling as a quantum dynamical process[J]. Physical Review Letters, 118, 233604(2017).
[24] Yan X B. Enhanced output entanglement with reservoir engineering[J]. Physical Review A, 96, 053831(2017).
[25] Deng Z J, Yan X B, Wang Y D et al. Optimizing the output-photon entanglement in multimode optomechanical systems[J]. Physical Review A, 93, 033842(2016).
[26] Yan X B, Deng Z J, Tian X D et al. Entanglement optimization of filtered output fields in cavity optomechanics[J]. Optics Express, 27, 24393-24402(2019).
[27] Qu K, Agarwal G S. Phonon-mediated electromagnetically induced absorption in hybrid opto-electromechanical systems[J]. Physical Review A, 87, 031802(2013).
[28] Agarwal G S, Huang S M. Nanomechanical inverse electromagnetically induced transparency and confinement of light in normal modes[J]. New Journal of Physics, 16, 033023(2014).
[29] Chen D C, Zhou Y H, Huang J F et al. Two-photon scattering in mixed cavity optomechanical system[J]. Acta Optica Sinica, 42, 0327015(2022).
[30] Hou B C, Chen H J. Coherent optical transmission characteristics based on magneto-optical force system[J]. Acta Optica Sinica, 41, 2127001(2021).
[31] Yan X B, Cui C L, Gu K H et al. Coherent perfect absorption, transmission, and synthesis in a double-cavity optomechanical system[J]. Optics Express, 22, 4886-4895(2014).
[32] Yan X B, Lu H L, Gao F et al. Perfect optical nonreciprocity in a double-cavity optomechanical system[J]. Frontiers of Physics, 14, 52601(2019).
[33] Du L, Liu Y M, Jiang B et al. All-optical photon switching, router and amplifier using a passive-active optomechanical system[J]. EPL (Europhysics Letters), 122, 24001(2018).
[34] Xia C C, Yan X B, Tian X D et al. Ideal optical isolator with a two-cavity optomechanical system[J]. Optics Communications, 451, 197-201(2019).
[35] Yan X B, Gu K H, Fu C B et al. Electromagnetically induced transparency in a three-mode optomechanical system[J]. Chinese Physics B, 23, 114201(2014).
[36] Shahidani S, Naderi M H, Soltanolkotabi M. Control and manipulation of electromagnetically induced transparency in a nonlinear optomechanical system with two movable mirrors[J]. Physical Review A, 88, 053813(2013).
[37] Liu Y X, Davanço M, Aksyuk V et al. Electromagnetically induced transparency and wideband wavelength conversion in silicon nitride microdisk optomechanical resonators[J]. Physical Review Letters, 110, 223603(2013).
[38] Wang J, Tian X D. Ideal optomechanically induced transparency and amplification based on nonrotating wave approximation effect[J]. Laser & Optoelectronics Progress, 58, 0512002(2021).
[39] Pan G X, Xiao R J, Chen H J et al. Multicolor optomechanically induced transparency in a distant nano-electro-optomechanical system assisted by two-level atomic ensemble[J]. Laser Physics, 31, 065202(2021).
[40] Yan X B. Optomechanically induced transparency and gain[J]. Physical Review A, 101, 043820(2020).
[41] Agarwal G S, Huang S M. Electromagnetically induced transparency in mechanical effects of light[J]. Physical Review A, 81, 041803(2010).
[42] Weis S, Rivière R, Deléglise S et al. Optomechanically induced transparency[J]. Science, 330, 1520-1523(2010).
[43] Safavi-Naein A H, Mayer Alegre T P, Chan J et al. Electromagnetically induced transparency and slow light with optomechanics[J]. Nature, 472, 69-73(2011).
[44] Yan X B. Optomechanically induced optical responses with non-rotating wave approximation[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 54, 035401(2021).
[45] Chen B, Jiang C, Zhu K D. Slow light in a cavity optomechanical system with a Bose-Einstein condensate[J]. Physical Review A, 83, 055803(2011).
[46] Tarhan D, Huang S M, Müstecaplıoğlu Ö E. Superluminal and ultraslow light propagation in optomechanical systems[J]. Physical Review A, 87, 013824(2013).
[47] Gu K H, Yan X B, Zhang Y et al. Tunable slow and fast light in an atom-assisted optomechanical system[J]. Optics Communications, 338, 569-573(2015).
[48] Chang D E, Safavi-Naeini A H, Hafezi M et al. Slowing and stopping light using an optomechanical crystal array[J]. New Journal of Physics, 13, 023003(2011).
[49] Akram M J, Khan M M, Saif F. Tunable fast and slow light in a hybrid optomechanical system[J]. Physical Review A, 92, 023846(2015).
[50] Yan X B. Optomechanically induced ultraslow and ultrafast light[J]. Physica E: Low-Dimensional Systems and Nanostructures, 131, 114759(2021).
[51] Wang L, Chen Y T, Yin K et al. Nonreciprocal transmission and asymmetric fast-slow light effect in an optomechanical system with two PT-symmetric mechanical resonators[J]. Laser Physics, 30, 105205(2020).
[52] Nunnenkamp A, Sudhir V, Feofanov A K et al. Quantum-limited amplification and parametric instability in the reversed dissipation regime of cavity optomechanics[J]. Physical Review Letters, 113, 023604(2014).
[53] Metelmann A, Clerk A A. Quantum-limited amplification via reservoir engineering[J]. Physical Review Letters, 112, 133904(2014).
[54] Yan X B, Jia W Z, Li Y et al. Optomechanically induced amplification and perfect transparency in double-cavity optomechanics[J]. Frontiers of Physics, 10, 351-357(2015).
[55] Bhattacharya M, Uys H, Meystre P. Optomechanical trapping and cooling of partially reflective mirrors[J]. Physical Review A, 77, 033819(2008).
[56] Gröblacher S, Hammerer K, Vanner M R et al. Observation of strong coupling between a micromechanical resonator and an optical cavity field[J]. Nature, 460, 724-727(2009).
[57] Bigelow M S, Lepeshkin N N, Boyd R W. Nanofabrication of optical structures and devices for photonics and biophotonics[J]. Science, 301, 200-202(2003).
Get Citation
Copy Citation Text
Laibin Qian, Xianli Li, Xiulong Zhang, Liwei Song. Optomechanically Induced Amplification and Slow Light in Coupled Cavities[J]. Laser & Optoelectronics Progress, 2023, 60(19): 1927001
Category: Quantum Optics
Received: Mar. 31, 2022
Accepted: Jun. 22, 2022
Published Online: Sep. 25, 2023
The Author Email: Xianli Li (lxl7158@163.com), Liwei Song (zhidao90@163.com)