Infrared and Laser Engineering, Volume. 51, Issue 10, 20220013(2022)

Target tracking algorithm based on adaptive feature fusion in complex scenes

Bo Li1,2,3,4 and Xinyu Zhang1,2,3
Author Affiliations
  • 1Key Laboratory of Opto-Electronic Information Processing, Chinese Academy of Sciences, Shenyang 110016, China
  • 2Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110169, China
  • 3Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences , Shenyang 110169, China
  • 4University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    Figures & Tables(10)
    Framework of proposed algorithm
    Channel attention module
    Lightweight network module
    Comparison of tracking performance of different algorithms
    Success plots of partial interference scenes on OTB100 datasets
    Qualitative evaluation results of 6 tracking algorithms on partial video sequences
    • Table 1. Improved network structure

      View table
      View in Article

      Table 1. Improved network structure

      LayerOutput sizeStrideNumInput size
      Conv2 d 3×3 112×112×3221224×224×3
      Block1112×112×9611112×112×32
      Block256×56×14423112×112×96
      Block328×28×1922356×56×144
      Block414×14×2882428×28×192
      Block514×14×3842414×14×288
      Block67×7×5762314×14×384
      Block77×7×1280127×7×576
      Avgpooling1×1×1280-17×7×1 280
      Conv2 d 1×1 k-11×1×1 280
    • Table 2. Comparison of tracking performance under each improvement strategy

      View table
      View in Article

      Table 2. Comparison of tracking performance under each improvement strategy

      MethodsPrecisionSuccess rateNetwork params
      Proposed92.5367.67$ {\text{3}}{\text{.7}} \times {\text{1}}{{\text{0}}^{\text{6}}} $
      ECO-feature+learning_rate92.3067.15$ {\text{138}}{\text{.4}} \times {\text{1}}{{\text{0}}^{\text{6}}} $
      ECO-feature92.1467.05$ {\text{138}}{\text{.4}} \times {\text{1}}{{\text{0}}^{\text{6}}} $
      ECO-learning_rate90.9166.95$ {\text{138}}{\text{.4}} \times {\text{1}}{{\text{0}}^{\text{6}}} $
      ECO89.9066.02$ {\text{138}}{\text{.4}} \times {\text{1}}{{\text{0}}^{\text{6}}} $
    • Table 3. Comparison of comprehensive performance of different trackers

      View table
      View in Article

      Table 3. Comparison of comprehensive performance of different trackers

      ResultsProposedECOECO-HCDeepSRDCFSRDCFdeconSRDCFDSSTCSK
      Precision92.5389.9084.7684.2581.7178.1168.2051.97
      Overlap67.6766.0263.8063.0362.2059.3251.4738.49
      Mean FPS15.17.161.31.13.74.450.4346.9
    • Table 4. Comparison of precision of each algorithm under different interference

      View table
      View in Article

      Table 4. Comparison of precision of each algorithm under different interference

      AlgorithmsBCDEFFMIPRIVLRMBOCCOPROVSV
      Proposed95.3589.0288.3590.1791.3593.0390.2689.8492.0587.3791.57
      ECO86.4684.9387.2087.8687.4679.2286.6089.6190.0683.2089.53
      ECO-HC84.1678.2080.4178.6577.3880.4778.7983.0583.0281.8382.45
      DeepSRDCF83.2475.7878.8979.2474.0570.2280.6180.7282.1178.0682.20
      SRDCFdecon84.1272.8475.3974.6679.1467.2079.9275.1478.1064.0780.81
      SRDCF76.1570.8474.8271.2874.2963.0975.4771.8272.5659.7174.93
      DSST69.0952.8857.8268.3567.5158.0858.0459.4865.2247.7865.42
      CSK57.4243.6242.0153.1445.0736.7238.8543.0849.9431.5246.33
    Tools

    Get Citation

    Copy Citation Text

    Bo Li, Xinyu Zhang. Target tracking algorithm based on adaptive feature fusion in complex scenes[J]. Infrared and Laser Engineering, 2022, 51(10): 20220013

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image processing

    Received: Feb. 20, 2022

    Accepted: --

    Published Online: Jan. 6, 2023

    The Author Email:

    DOI:10.3788/IRLA20220013

    Topics