Laser & Optoelectronics Progress, Volume. 60, Issue 10, 1010009(2023)

Location of Typhoon Center Based on Multi-Scale Mosaic Mask R-CNN

Zongsheng Zheng, Jiahui Zhao*, Peng Lu, Guoliang Zou, and Zhenhua Wang
Author Affiliations
  • College of Information Technology, Shanghai Ocean University, Shanghai 201306, China
  • show less
    Figures & Tables(15)
    Model architecture diagram
    Original labeled data. (a) Sample 1; (b) sample 2; (c) sample 3; (d) sample 4
    Fused data
    Satellite cloud image data. (a) Sample 1; (b) sample 2; (c) sample 3; (d) sample 4
    Sample drawing of detect results. (a) Sample 1; (b) sample 2; (c) sample 3; (d) sample 4
    Loss function figure of Mask R-CNN model
    Loss function figures of Mask R-CNN model combined with data augmentation. (a) Proposed multi-scale mosaic; (b) Cutout; (c) CutMix; (d) mosaic
    Deep learning method for locating typhoon center. (a) Faster R-CNN; (b) YOLOv3; (c) Mask R-CNN
    Fitting diagrams of real coordinates and segmented coordinates of model. (a) HAISHEN; (b) VAMCO
    • Table 1. Scale division of typhoon eye

      View table

      Table 1. Scale division of typhoon eye

      Level of scaleRadius sizeNumber of pictures
      Smallr< 1.431467
      Middle1.43 ≤r< 1.901467
      Larger≥ 1.901466
    • Table 2. Universal hyperparameter settings

      View table

      Table 2. Universal hyperparameter settings

      HyperparameterValue
      NMS-thresh0.45
      Score-thresh0.5
      Maximum iterations40000
      Model checkpoint2
      Learning rate10-4-10-6
      Weight decay5×10-4
      GPU number1
      Input size128×128
    • Table 3. Results of multi-scale experiments

      View table

      Table 3. Results of multi-scale experiments

      Scale combinationNumberMSEMean MSEMIoUMean MIoUMPAMean MPAFPSMean FPS
      Master model138020.90860.895920.4
      Large+Middle1215425540.94540.94210.92630.921817.120.6
      229810.93840.917023.3
      325270.94260.922121.5
      Large+Small1329034150.93220.93130.90980.911519.421.4
      237470.92700.906122.7
      332080.93480.918622.2
      Middle+Small1368541760.92590.91510.88360.889620.820.7
      247610.91510.890819.8
      340820.90440.894421.5
      Large+Middle+Small1312533550.91870.92220.89680.904322.120
      235880.92210.904718.7
      333510.92580.911319.2
    • Table 4. Comparison of wind eye segmentation results at different scales

      View table

      Table 4. Comparison of wind eye segmentation results at different scales

      ModelMIoUSMIoUMMIoULMPASMPAMMPAL
      Mask R-CNN0.88800.91450.92330.88300.88310.9216
      Mask R-CNN+Proposed multi-scale mosaic0.93050.94690.94890.90900.91970.9367
    • Table 5. Experimental results of each data augmentation

      View table

      Table 5. Experimental results of each data augmentation

      ModelData augmentation methodMSEMIoUMPAFPS
      Mask R-CNN38020.90860.895920.4
      Proposed multi-scale mosaic25540.94210.921820.6
      Cutout53730.85690.824722.8
      CutMix40060.91350.906117.0
      mosaic32490.92070.907415.4
    • Table 6. Comparison of location accuracy of typhoon center

      View table

      Table 6. Comparison of location accuracy of typhoon center

      ModelMean errorMean variance
      LongitudeLatitudeLongitudeLatitude
      Faster R-CNN0.310.260.0550.046
      YOLOv30.280.250.0430.039
      Mask R-CNN+Proposed multi-scale mosaic0.170.190.0280.025
    Tools

    Get Citation

    Copy Citation Text

    Zongsheng Zheng, Jiahui Zhao, Peng Lu, Guoliang Zou, Zhenhua Wang. Location of Typhoon Center Based on Multi-Scale Mosaic Mask R-CNN[J]. Laser & Optoelectronics Progress, 2023, 60(10): 1010009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Dec. 29, 2021

    Accepted: Feb. 21, 2022

    Published Online: May. 17, 2023

    The Author Email: Jiahui Zhao (jiahui_zhao@foxmail.com)

    DOI:10.3788/LOP213379

    Topics