Laser & Optoelectronics Progress, Volume. 61, Issue 24, 2428002(2024)

Hyperspectral-Image Classification Combining Spatial-Spectral Self-Attention and Multigranularity Feature Extraction

Lin Wei1,2, Zhe Chen1、*, and Yuping Yin3
Author Affiliations
  • 1School of Electronics and Information Engineering, Liaoning University of Engineering and Technology, Huludao 125105, Liaoning , China
  • 2Department of Basic Teaching, Liaoning University of Engineering and Technology, Huludao 125105, Liaoning , China
  • 3Faculty of Electrical and Control Engineering, Liaoning University of Engineering and Technology, Huludao 125105, Liaoning , China
  • show less
    Figures & Tables(18)
    MCSSA network structure diagram
    Multi-granularity convolutional neural network structure
    Transformer encoder structure
    Structure of the air-spectrum self-attention mechanism
    Houston 2013 dataset. (a) Pseudo color image; (b) label diagram
    MUFFL dataset. (a) Pseudo color image; (b) label diagram
    Trento dataset. (a) Pseudo color image; (b) label diagram
    Indian_pines dataset. (a) Pseudo color image; (b) label diagram
    Effect of input image size on classification accuracy of four datasets
    Classification visualization comparison of Trento dataset. (a) Label diagram; (b) SVM; (c) HybridSN; (d) SSRN; (e) FDSSC; (f) DBDA; (g) VIT; (h) morphFormer; (i) MCSSA
    Classification visualization comparison of UH dataset. (a) Label diagram; (b) SVM; (c) HybridSN; (d) SSRN; (e) FDSSC; (f) DBDA; (g) VIT; (h) morphFormer; (i) MCSSA
    Classification visualization comparison of MUFFL dataset. (a) Label diagram; (b) SVM; (c) HybridSN; (d) SSRN; (e) FDSSC;(f) DBDA; (g) VIT; (h) morphFormer; (i) MCSSA
    Classification visualization comparison of IP dataset. (a) Label diagram; (b) SVM; (c) HybridSN; (d) SSRN; (e) FDSSC; (f) DBDA; (g) VIT; (h) morphFormer; (i) MCSSA
    • Table 1. Results of MCSSA ablation comparison experiments on four datasets

      View table

      Table 1. Results of MCSSA ablation comparison experiments on four datasets

      Multi-granularity ConvDual-channel DSConvSSSATrentoIndian pinesHoustonMUUFL
      94.5795.5181.8389.76
      97.6999.1785.4391.61
      97.8396.9581.6191.82
      97.8095.7283.2591.26
      98.2899.1987.5393.06
      98.3098.3287.3392.68
      98.2498.7489.1094.08
      98.7299.3289.6994.61
    • Table 2. Comparative experimental results on Trento dataset

      View table

      Table 2. Comparative experimental results on Trento dataset

      Class No.SVMHybridSNSSRNFDSSCDBDAVITmorphFormerProposed algorithm
      171.56±4.0896.33±0.0399.31±0.4999.73±0.0799.81±0.0391.91±0.9399.18±0.2499.25±0.01
      276.04±2.5881.67±0.0575.06±11.8388.75±6.9885.49±9.0974.74±3.2286.74±1.8794.52±0.29
      390.37±6.0292.50±0.0891.98±2.3599.91±0.0195.58±1.6294.30±0.7392.32±4.9389.03±1.27
      494.91±0.8998.33±0.0198.26±0.8999.91±0.0699.95±0.0199.58±0.0599.98±0.0199.99±0.00
      587.60±2.0398.67±0.0199.58±0.1799.66±0.1399.52±0.2998.59±0.3199.74±0.1099.85±0.14
      675.92±2.8489.83±0.0291.06±5.5388.38±9.2588.18±6.3085.90±2.3693.44±2.1995.93±1.42
      OA /%85.10±1.0995.49±1.0594.84±3.9497.19±1.1796.75±1.0394.31±1.2697.72±0.1198.72±0.15
      AA /%82.74±1.4191.21±1.7992.50±4.4196.00±0.0894.75±1.5490.84±1.4695.24±0.7996.43±0.01
      Kappa /%80.18±1.4293.98±1.3993.12±5.2296.25±1.5695.66±1.3792.41±1.9896.96±0.1598.29±0.20
    • Table 3. Comparative experimental results on UH dataset

      View table

      Table 3. Comparative experimental results on UH dataset

      Class No.SVMHybridSNSSRNFDSSCDBDAVITmorphFormerProposed algorithm
      190.32±3.6991.80±1.4790.86±5.5694.77±0.0488.23±7.7692.54±1.0894.89±1.9895.02±1.52
      292.16±5.1582.40±4.8493.78±0.6384.51±3.9781.60±1.3995.21±0.1794.63±0.7395.31±1.43
      394.15±5.9292.28±5.6796.59±0.9189.87±0.29100.00±0.0095.98±0.9397.57±0.8698.81±0.14
      496.11±3.1292.81±1.3399.49±0.1298.96±0.0198.28±0.6582.58±4.1991.36±0.9992.18±0.61
      590.86±3.5198.67±0.0193.30±4.3095.76±3.7397.13±0.2495.07±0.2796.34±0.5099.12±0.30
      699.72±0.0385.49±6.4591.20±1.7990.00±3.0086.61±2.6856.05±13.2566.77±3.4775.40±5.12
      770.08±6.5887.40±4.4581.44±8.6563.63±9.9679.66±6.6780.71±3.9887.95±1.3394.96±2.30
      865.70±10.8181.02±4.4387.68±1.7481.42±13.0490.29±8.8873.41±6.2465.54±2.5878.75±4.11
      963.95±7.8466.20±4.9272.76±7.5871.45±9.5075.10±2.1775.82±5.1389.31±2.3182.03±0.82
      1063.24±9.5781.43±3.4473.91±7.5977.76±7.6672.64±11.3785.64±2.3391.80±1.1691.93±1.54
      1162.29±8.6672.82±4.5275.04±7.5861.14±10.5172.93±5.3768.95±3.4875.58±0.9778.63±7.75
      1261.41±5.8468.55±10.9276.99±9.2077.14±13.7679.93±5.9687.98±1.0379.95±4.9889.30±2.29
      1340.76±10.8683.60±2.3287.47±1.2639.06±10.7993.72±5.1119.64±15.9682.28±4.2478.62±4.88
      1481.42±0.7597.87±0.0493.35±4.7699.54±0.0398.71±0.1882.56±4.7164.91±2.7381.08±4.11
      1599.27±0.5295.88±0.4998.08±1.3697.64±1.1198.71±0.1980.69±7.2695.01±3.6499.60±0.25
      OA /%76.74±3.2881.92±1.0785.26±3.6780.86±1.2283.75±2.8381.61±1.8986.40±0.3889.69±0.57
      AA /%78.10±3.0684.16±0.9187.46±1.4281.58±0.8387.33±1.2378.21±1.9184.90±0.1788.72±0.94
      Kappa /%74.83±3.5680.47±1.1684.06±4.0484.06±4.0482.42±3.0880.10±2.1185.29±0.4188.85±0.63
    • Table 4. Comparative experimental results on MUFFL dataset

      View table

      Table 4. Comparative experimental results on MUFFL dataset

      Class No.SVMHybridSNSSRNFDSSCDBDAVITmorphFormerProposed algorithm
      193.94±0.5896.50±0.0597.26±0.5696.88±1.0596.64±0.8696.34±0.5897.52±0.0998.04±0.23
      270.88±2.1082.75±0.0684.30±4.5285.03±5.7181.84±2.6877.12±3.6787.23±1.0590.62±1.20
      373.47±1.7486.25±1.0388.07±3.2485.08±7.1987.88±3.1080.81±1.0992.12±0.2893.70±0.80
      473.24±4.9687.24±0.2591.56±2.5687.53±3.8287.42±3.7982.59±2.2693.33±0.4594.48±0.68
      584.36±1.0692.01±0.1494.22±0.2592.39±1.3290.05±1.7991.32±2.1794.57±0.6294.88±0.61
      693.26±1.6892.50±0.2993.46±3.7178.45±1.1390.62±5.3575.39±8.1985.38±2.9597.07±1.26
      767.20±20.7180.32±0.8781.88±6.6381.91±5.1381.12±5.5184.29±3.1587.74±1.3688.79±1.13
      892.88±0.4692.75±0.3997.24±0.5294.75±2.1896.47±1.6690.38±2.9897.51±0.3897.94±0.46
      960.67±3.5873.50±0.8775.23±7.7985.54±8.9763.83±6.7163.52±1.4851.88±1.8959.37±3.11
      1081.78±11.1038.52±13.4636.43±24.2510.00±30.0025.36±21.9211.49±3.1421.09±18.629.58±3.82
      1195.10±2.7083.75±13.2286.77±10.7697.23±1.1980.87±6.1979.60±6.2982.35±3.3785.10±6.35
      OA /%85.19±0.1891.27±1.2492.94±1.1092.07±1.1391.51±0.9089.13±0.3593.46±0.0794.61±0.07
      AA /%80.62±0.1578.99±1.7584.22±1.4281.35±1.2880.19±1.6275.71±1.9280.04±0.5582.81±0.29
      Kappa /%80.44±0.2188.47±1.5890.66±1.3789.50±2.2188.77±1.2085.61±0.4591.30±0.0992.86±0.11
    • Table 5. Comparative experimental results on IP dataset

      View table

      Table 5. Comparative experimental results on IP dataset

      Class No.SVMHybridSNSSRNFDSSCDBDAVITmorphFormerProposed algorithm
      161.33±23.62100.00±0.00100.00±0.0099.00±0.0298.13±0.3789.63±5.5596.34±2.11100.00±0.00
      271.15±1.6590.12±1.7198.42±0.5699.37±0.0595.10±3.9493.87±0.9397.56±0.2798.92±0.34
      375.18±2.0196.82±1.8298.49±0.4898.62±0.0893.63±0.1096.95±2.4998.56±0.5299.43±0.40
      459.43±8.2496.35±0.5196.98±1.2399.16±0.0798.31±0.2681.92±4.1593.19±2.6698.75±2.15
      590.43±1.5799.12±0.0798.46±0.2498.16±0.1498.27±0.1489.42±6.1295.74±0.1197.74±0.73
      688.12±1.7898.31±0.6599.82±0.0299.06±0.5197.76±0.2598.09±0.4399.54±0.1899.87±0.07
      785.32±9.59100.00±0.00100.00±0.0097.39±0.5280.84±10.1380.01±0.32100.00±0.00100.00±0.00
      889.61±1.8099.86±0.0297.96±0.3999.89±0.2198.78±0.2499.53±0.16100.00±0.00100.00±0.00
      973.58±6.74100.00±0.00100.00±0.0096.47±0.7077.63±18.9073.61±13.8187.50±10.1595.58±2.54
      1074.85±2.1797.97±0.0493.42±1.0097.92±1.4090.72±0.1486.31±3.1394.80±1.4498.78±0.60
      1177.56±0.9697.68±1.8998.96±0.1699.23±0.0798.74±0.8998.46±0.7298.97±0.2599.72±0.14
      1271.27±3.8493.15±2.1398.49±0.4599.24±0.0790.65±8.9885.06±11.8494.71±1.1499.35±0.45
      1391.52±3.41100.00±0.00100.00±0.0099.87±0.0298.59±0.2297.02±2.7199.05±0.23100.00±0.00
      1491.68±0.8799.07±0.1798.92±0.3899.28±0.0798.57±0.1098.52±1.4999.89±0.0399.97±0.04
      1575.87±2.7298.69±0.4594.33±3.8898.59±0.1998.56±0.1682.63±12.1398.91±0.7198.93±1.17
      1697.24±2.8389.42±2.3394.80±4.2195.17±0.5593.79±0.7994.64±1.9799.70±0.0593.98±2.88
      OA /%79.72±0.7596.15±0.6498.02±0.2098.97±0.0495.73±0.5194.20±0.3897.99±0.2699.32±0.09
      AA /%79.63±2.9794.28±0.8598.06±0.1898.53±0.0894.26±0.6290.35±1.0197.15±1.1498.57±0.07
      Kappa /%76.75±0.8695.60±0.3197.75±0.2598.83±0.0595.19±0.5793.36±0.4497.70±0.2999.22±0.03
    Tools

    Get Citation

    Copy Citation Text

    Lin Wei, Zhe Chen, Yuping Yin. Hyperspectral-Image Classification Combining Spatial-Spectral Self-Attention and Multigranularity Feature Extraction[J]. Laser & Optoelectronics Progress, 2024, 61(24): 2428002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Mar. 6, 2024

    Accepted: Apr. 18, 2024

    Published Online: Dec. 17, 2024

    The Author Email: Zhe Chen (415899149@qq.com)

    DOI:10.3788/LOP240832

    CSTR:32186.14.LOP240832

    Topics