Laser & Optoelectronics Progress, Volume. 61, Issue 24, 2428002(2024)
Hyperspectral-Image Classification Combining Spatial-Spectral Self-Attention and Multigranularity Feature Extraction
Fig. 10. Classification visualization comparison of Trento dataset. (a) Label diagram; (b) SVM; (c) HybridSN; (d) SSRN; (e) FDSSC; (f) DBDA; (g) VIT; (h) morphFormer; (i) MCSSA
Fig. 11. Classification visualization comparison of UH dataset. (a) Label diagram; (b) SVM; (c) HybridSN; (d) SSRN; (e) FDSSC; (f) DBDA; (g) VIT; (h) morphFormer; (i) MCSSA
Fig. 12. Classification visualization comparison of MUFFL dataset. (a) Label diagram; (b) SVM; (c) HybridSN; (d) SSRN; (e) FDSSC;(f) DBDA; (g) VIT; (h) morphFormer; (i) MCSSA
Fig. 13. Classification visualization comparison of IP dataset. (a) Label diagram; (b) SVM; (c) HybridSN; (d) SSRN; (e) FDSSC; (f) DBDA; (g) VIT; (h) morphFormer; (i) MCSSA
|
|
Get Citation
Copy Citation Text
Lin Wei, Zhe Chen, Yuping Yin. Hyperspectral-Image Classification Combining Spatial-Spectral Self-Attention and Multigranularity Feature Extraction[J]. Laser & Optoelectronics Progress, 2024, 61(24): 2428002
Category: Remote Sensing and Sensors
Received: Mar. 6, 2024
Accepted: Apr. 18, 2024
Published Online: Dec. 17, 2024
The Author Email: Zhe Chen (415899149@qq.com)
CSTR:32186.14.LOP240832