Laser & Optoelectronics Progress, Volume. 57, Issue 24, 242804(2020)

Tree-Species Identification of Multisource Remote-Sensing Data using Improved 3D-CNN

Xusheng Li1, Donghua Chen2,3、*, Saisai Liu3, Naiming Zhang4, and Hu Li2、*
Author Affiliations
  • 1College of Grassland and Environment Sciences, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
  • 2School of Geography and Tourism, Anhui Normal University, Wuhu, Anhui 241000, China
  • 3College of Computer and Information Engineering, Chuzhou University, Chuzhou, Anhui 239000, China
  • 4College of Geography and Tourism, Xinjiang Normal University, Urumqi, Xinjiang 830001, China
  • show less
    Figures & Tables(16)
    Principle comparison between 3D-CNN and 2D-CNN. (a) 2D-CNN; (b) 3D-CNN
    Diagram of network structure. (a) Flat network; (b) ResNet
    Structure of 3D-RCNN
    Distribution of study area and samples
    Correlation matrix of characteristic factors. (a) Spectral feature; (b) texture feature; (c) vegetation index feature
    Sample expansion by inner ring rotation
    Influence of number of convolution units on test time and overall accuracy
    Influence of step size on test time and overall accuracy
    Tree species distribution. (a) Forest inventory; (b) algorithm extraction
    • Table 1. Basic information of remote-sensing image data

      View table

      Table 1. Basic information of remote-sensing image data

      SensorProduct numberLatitude and longitude of centerImaging timeCloud cover /%
      GF-5 AHIS45157118.02°E,32.30°N2019-05-22
      GF-6 PMS1119873930117.90°E,32.10°N2019-05-01<5
    • Table 2. Number of samples

      View table

      Table 2. Number of samples

      Tree speciesMeasured samplesExpanded samplesRegular samplesSample set
      Quercus acutissima641002313696
      Celtissinensis721001973152
      Dalbergiahupeana661001472352
      Pinus massoniana701002924672
      Pinus elliottii771002063296
      Cunninghamia lanceolate781001752800
      Others52601552480
    • Table 3. Influence of input pixel size on operation time and overall accuracy

      View table

      Table 3. Influence of input pixel size on operation time and overall accuracy

      PTraining time /sTest time /sOA /%
      3879.229.1283.22
      151020.5511.2283.95
      171159.5314.7184.87
      191362.9933.5384.90
      211505.8852.1284.73
      231817.5888.6084.85
    • Table 4. Influence of convolution kernel size on operation time and overall accuracy

      View table

      Table 4. Influence of convolution kernel size on operation time and overall accuracy

      QTest time /sOA /%
      3×3×376.2090.27
      5×5×580.1090.79
      7×7×788.0190.28
      9×9×9105.6190.52
    • Table 5. Influence of learning rate on convergence rate and overall accuracy

      View table

      Table 5. Influence of learning rate on convergence rate and overall accuracy

      SNumber of iterationsOA /%
      0.000198690.56
      0.000277690.92
      0.000360291.47
      0.000447491.69
      0.000552291.22
      0.000643990.03
      0.000765989.87
      0.000875590.21
      0.000971090.42
      0.001092889.15
    • Table 6. Classification accuracy evaluation matrix of each algorithm

      View table

      Table 6. Classification accuracy evaluation matrix of each algorithm

      AlgorithmParameterSpecies 1Species 2Species 3Species 4Species 5Species 6Species 7
      UA /%90.2988.5393.8597.1493.2490.2691.63
      3D-RCNNPA/%95.6392.2697.4686.9792.7689.5794.96
      OA /%91.72
      Kappa0.849
      UA /%80.7287.5190.2388.7687.5787.6981.11
      3D-CNNPA/%90.1283.6687.5584.8486.8980.1982.68
      OA /%85.65
      Kappa0.820
      UA /%87.5077.5092.5095.0072.5082.5091.67
      SVMPA /%94.5983.7894.8786.3672.5086.8475.86
      OA /%85.22
      Kappa0.827
    • Table 7. Accuracy verification of tree species area

      View table

      Table 7. Accuracy verification of tree species area

      ParameterSpecies 1Species 2Species 3Species 4Species 5Species 6Species 7
      Statistical area /km27.81510.4181.5744.2274.7541.7084.721
      Identified area /km27.1569.2661.5904.3505.0471.6773.866
      RA /%91.5788.9499.0097.0893.8398.1581.89
      Average RA /%92.92
    Tools

    Get Citation

    Copy Citation Text

    Xusheng Li, Donghua Chen, Saisai Liu, Naiming Zhang, Hu Li. Tree-Species Identification of Multisource Remote-Sensing Data using Improved 3D-CNN[J]. Laser & Optoelectronics Progress, 2020, 57(24): 242804

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Apr. 23, 2020

    Accepted: May. 29, 2020

    Published Online: Nov. 25, 2020

    The Author Email: Donghua Chen (lihu2881@aliyun.com), Hu Li (lihu2881@aliyun.com)

    DOI:10.3788/LOP57.242804

    Topics