Journal of Optoelectronics · Laser, Volume. 35, Issue 10, 1032(2024)
Mobile pedestrian tracking based on multi-camera information fusion
[1] [1] KUMAR A, WALIA G S, SHARMA K. Recent trends in multicue based visual tracking: A review[J]. Expert Systems with Applications, 2020, 162: 113711.
[3] [3] CHEN F, WANG X, ZHAO Y, et al. Visual object tracking: A survey[J]. Computer Vision and Image Understanding, 2022, 222: 103508.
[5] [5] BOCHINSKI E, SENST T, SIKORA T. Extending IOU based multi-object tracking by visual information[C]//2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), November 27-30, 2018, Auckland, New Zealand. New York: IEEE, 2018: 1-6.
[6] [6] ARANDA M, RAMON J A C, MEZOUAR Y, et al. Monocular visual shape tracking and servoing for isometrically deforming objects[C]/2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), February 10, 2021, Las Vegas, NV, USA. New York: IEEE, 2020: 7542-7549.
[7] [7] HU K, YE J, FAN E, et al. A novel object tracking algorithm by fusing color and depth information based on single valued neutrosophic cross-entropy[J]. Journal of Intelligent & Fuzzy Systems, 2017, 32(3): 1775-1786.
[8] [8] ZABLOCKI , BEN YOUNES H, PREZ P, et al. Explainability of deep vision-based autonomous driving systems: Review and challenges[J]. International Journal of Computer Vision, 2022, 130(10): 2425-2452.
[9] [9] MUZAMMAL M, TALAT R, SODHRO A H, et al. A multi-sensor data fusion enabled ensemble approach for medical data from body sensor networks[J]. Information Fusion, 2020, 53: 155-164.
[10] [10] PENG S, LIU Y, HUANG Q, et al. PVNet: Pixel-wise voting network for 6DoF pose estimation[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 16-20, 2019, Long Beach, CA. New York: IEEE, 2019: 4561-4570.
[11] [11] AKHTAR N, MIAN A. Threat of adversarial attacks on deep learning in computer vision: A survey[J]. IEEE Access, 2018, 6: 14410-14430.
[12] [12] GRAVINA R, ALINIA P, GHASEMZADEH H, et al. Multi-sensor fusion in body sensor networks: State-of-the-art and research challenges[J]. Information Fusion, 2017, 35: 68-80.
[13] [13] SHIN J, PIRAN M J, SONG H K, et al. UAV-assisted and deep learning-driven object detection and tracking for autonomous driving[C]//5th International ACM Mobicom Workshop on Drone Assisted Wireless Communications for 5G and Beyond, October 17, 2022, Sydney, NSW, Australia. New York: Association for Computing Machinery, 2022: 7-12.
[14] [14] LIANG M, YANG B, WANG S, et al. Deep continuous fusion for multi-sensor 3D object detection[C]//European Conference on Computer Vision (ECCV), September 8-14, 2018, Munich, Germany. Cham: Springer, 2018: 663-678.
[17] [17] CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//European Conference on Computer Vision (ECCV), 15th European Conference, September 8-14, 2018, Muich, Germany, Cham: Springer, 2018: 833-851.
[18] [18] SORKINE-HORNUNG O, RABINOVICH M. Least-squares rigid motion using svd[J]. Computing, 2017, 1(1): 1-5.
[19] [19] SUN S, PENG F, LIN H. Distributed asynchronous fusion estimator for stochastic uncertain systems with multiple sensors of different fading measurement rates[J]. IEEE Transactions on Signal Processing, 2017, 66(3): 641-653.
Get Citation
Copy Citation Text
CHEN Xiuqi, ZHAO Yuntao, LI Weigang, HUANG Jiahui. Mobile pedestrian tracking based on multi-camera information fusion[J]. Journal of Optoelectronics · Laser, 2024, 35(10): 1032
Category:
Received: Mar. 12, 2023
Accepted: Dec. 31, 2024
Published Online: Dec. 31, 2024
The Author Email: