Journal of Infrared and Millimeter Waves, Volume. 44, Issue 3, 445(2025)

Multi-physics coupling-based multi-parameter joint optimization technique for aerial target infrared detection

Xiang DING1,2、* and Kai QIAO1,2
Author Affiliations
  • 1Beijing Institute of Tracking and Telecommunication Technology, Beijing 100094, China
  • 2National Key Laboratory of Space Integrated Information System, Beijing 100094, China
  • show less
    References(36)

    [1] Zheng Q, Xu Z, Wang Y et al. Overall optimization design of high temperature components cooling coefficient for lower infrared turbofan engine[J]. Infrared Physics & Technology, 102, 102990(2019).

    [2] Zhang T, Dong W, Wang Z Y et al. Investigation of infrared spectral emissivity of low emittance functional coating artefacts[J]. Infrared Physics & Technology, 110, 103454(2020).

    [3] Li N, Lv Z, Huai W et al. A simulation method of aircraft plumes for real-time imaging[J]. Infrared Physics & Technology, 77, 153-161(2016).

    [4] Zhou Y, Wang Q, Li T et al. A numerical simulation method for aircraft infrared imaging[J]. Infrared Physics & Technology, 83, 68-77(2017).

    [5] Zhou Y, Wang Q, Li T. A new model to simulate infrared radiation from an aircraft exhaust system[J]. Chinese Journal of Aeronautics, 30, 651-662(2017).

    [6] Chen H, Zhang H, Xi Z et al. Modeling of the turbofan with an ejector nozzle based on infrared prediction[J]. Applied Thermal Engineering, 159, 113910(2019).

    [7] Sun W, Wang S B. Study on infrared images simulation of fighter aircraft[C], 1703-1708(2019).

    [8] Wu S, Zhang K, Niu S et al. Anti-interference aircraft-tracking method in infrared imagery[J]. Sensors, 19, 1289(2019).

    [9] Nam J, Chang I, Lee Y et al. Effect of flight altitude on minimal infrared signature of combat aircraft[J]. Journal of the Computational Structural Engineering Institute of Korea, 33, 375-382(2020).

    [10] Mahulikar S P, Sane S K, Gaitonde U N et al. Numerical studies of infrared signature levels of complete aircraft[J]. The aeronautical journal, 105, 185-192(2001).

    [11] Mahulikar S P, Sonawane H R, Rao G A. Infrared signature studies of aerospace vehicles[J]. Progress in aerospace sciences, 43, 218-245(2007).

    [12] Baranwal N, Mahulikar S P. IR signature study of aircraft engine for variation in nozzle exit area[J]. Infrared Physics & Technology, 74, 21-27(2016).

    [13] Sircilli F, Retief S J P, Magalhães L B et al. Measurements of a micro gas turbine plume and data reduction for the purpose of infrared signature modeling[J]. IEEE Transactions on Aerospace and Electronic Systems, 51, 3282-3293(2015).

    [14] Lee J H, Chae J H, Ha N K et al. Efficient prediction of aerodynamic heating of a high speed aircraft for IR signature analysis[J]. Journal of the Korean Society for Aeronautical & Space Sciences, 47, 768-778(2019).

    [15] Hu H, Li Y, Wei Z et al. Optimization of the MSMGWB model used for the calculation of infrared remote sensing signals from hot combustion gases of hydrocarbon fuel[J]. Infrared Physics & Technology, 107, 103286(2020).

    [16] Cha J H, Kim T, Bae J Y et al. Variation of supersonic aircraft skin temperature under different Mach number and structure[J]. Journal of the Korea Institute of Military Science and Technology, 17, 463-470(2014).

    [17] Pan X, Wang X, Wang R et al. Infrared radiation and stealth characteristics prediction for supersonic aircraft with uncertainty[J]. Infrared Physics & Technology, 73, 238-250(2015).

    [18] Wang Y, Xie F, Wang J. Short-wave infrared signature and detection of aircraft in flight based on space-borne hyperspectral imagery[J]. Chinese Optics Letters, 14, 122801(2016).

    [19] Gu B, Baek S W, Jegal H et al. Infrared signature characteristic of a microturbine engine exhaust plume[J]. Infrared Physics & Technology, 86, 11-22(2017).

    [20] Kou T, Zhou Z, Liu H et al. Multispectral radiation envelope characteristics of aerial infrared targets[J]. Optics & Laser Technology, 103, 251-259(2018).

    [21] Kou T, Zhou Z, Liu H et al. Multi-band composite detection and recognition of aerial infrared point targets[J]. Infrared Physics & Technology, 94, 102-109(2018).

    [22] Rao A, Mahulikar S. Aircraft powerplant and plume infrared signature modelling and analysis[J]. Aiaa Journal, 91(2013).

    [23] QIAO Kai, ZHI Xi-Yang, YANG Dong et al. A performance characterization and matching design method of space-based optical detection for weak aerial target[J]. Journal of Infrared Millim. Waves, 38, 642-647(2019).

    [24] Yuan H, Wang X R, Guo B T et al. Performance analysis of the infrared imaging system for aircraft plume detection from geostationary orbit[J]. Applied optics, 58, 1691-1698(2019).

    [25] Ni X, Yu S, Su X et al. Detection spectrum optimization of stealth aircraft targets from a space-based infrared platform[J]. Optical and Quantum Electronics, 54, 1-12(2022).

    [26] Mahulikar S P, Potnuru S K, Rao G A. Study of sunshine, skyshine, and earthshine for aircraft infrared detection[J]. Journal of Optics A: Pure and Applied Optics, 11, 045703(2009).

    [27] Wang X. Infrared Radiation Analysis and Imaging Simulation of Aerial Target[D](2021).

    [28] Li N, Lv Z, Wang S et al. A real-time infrared radiation imaging simulation method of aircraft skin with aerodynamic heating effect[J]. Infrared Physics & Technology, 71, 533-541(2015).

    [29] Retief S J P, Smit P, Dreyer M M. Mid-wave infrared characterization of an aircraft plume[C], 1-6(2011).

    [30] An C H, Kang D W, Baek S T et al. Analysis of plume infrared signatures of S-shaped nozzle configurations of aerial vehicle[J]. Journal of Aircraft, 53, 1768-1778(2016).

    [31] Feng Y. Infrared characteristics and flow field of the exhaust plume outside twin engine nozzle[C], 10244, 221-226(2017).

    [32] Huang W, Ji H Y. Effect of reflected background radiation by skin on infrared characteristics of subsonic aircraft[J]. Infrared and Laser Engineering, 44, 2039-2043(2015).

    [33] Yang T, Zhou F, Xing M. A method for calculating the energy concentration degree of point target detection system[J]. Spacecr.Recovery Remote Sens, 38, 41-47(2017).

    [34] Zhang J, Zheng L, Zhou X X et al. Signal-to-noise analysis of point target detection using image pixel binning for space-based infrared electro-optical systems[J]. Infrared Physics & Technology, 133, 104757(2023).

    [35] Konnik M, Welsh J. High-level numerical simulations of noise in CCD and CMOS photosensors: Review and tutorial[J]. arXiv preprint(2014).

    [36] Zhou X, Ni X, Zhang J et al. A novel detection performance modular evaluation metric of space-based infrared system[J]. Optical and Quantum Electronics, 54, 274(2022).

    Tools

    Get Citation

    Copy Citation Text

    Xiang DING, Kai QIAO. Multi-physics coupling-based multi-parameter joint optimization technique for aerial target infrared detection[J]. Journal of Infrared and Millimeter Waves, 2025, 44(3): 445

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Interdisciplinary Research on Infrared Science

    Received: Sep. 18, 2024

    Accepted: --

    Published Online: Jul. 9, 2025

    The Author Email: Xiang DING (dingxiang1212@163.com)

    DOI:10.11972/j.issn.1001-9014.2025.03.014

    Topics