Journal of Synthetic Crystals, Volume. 51, Issue 4, 620(2022)
Electronic Structure Properties of Graphene and Graphene/Boron Nitride
[1] [1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[2] [2] SUN Y, XU B, YI L. HfN2 monolayer: a new direct-gap semiconductor with high and anisotropic carrier mobility[J]. Chinese Physics B, 2020, 29(2): 023102.
[3] [3] WU X M, XIONG L, FENG Y L, et al. The half-metallicity and the spin filtering, NDR and spin Seebeck effects in 2D Ag-doped SnSe2 monolayer[J]. The Journal of Chemical Physics, 2019, 150(6): 064701.
[4] [4] SHUKLA V, JENA N K, GRIGORIEV A, et al. Prospects of graphene-hBN heterostructure nanogap for DNA sequencing[J]. ACS Applied Materials & Interfaces, 2017, 9(46): 39945-39952.
[5] [5] AN Y P, JIAO J T, HOU Y S, et al. Negative differential conductance effect and electrical anisotropy of 2D ZrB2 monolayers[J]. Journal of Physics Condensed Matter: an Institute of Physics Journal, 2019, 31(6): 065301.
[6] [6] DRAGOMAN M, DRAGOMAN D. Graphene-based quantum electronics[J]. Progress in Quantum Electronics, 2009, 33(6): 165-214.
[7] [7] BOLOTIN K I, SIKES K J, JIANG Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 2008, 146(9/10): 351-355.
[8] [8] DU J H, PEI S F, MA L P, et al. 25th anniversary article: carbon nanotube- and graphene-based transparent conductive films for optoelectronic devices[J]. Advanced Materials, 2014, 26(13): 1958-1991.
[9] [9] CHOE M, CHO C Y, SHIM J P, et al. Au nanoparticle-decorated graphene electrodes for GaN-based optoelectronic devices[J]. Applied Physics Letters, 2012, 101(3): 031115.
[10] [10] KUSMARTSEV F V, WU W M, PIERPOINT M P, et al. Application of Graphene within optoelectronic devices and transistors[J]. Applied Spectroscopy and the Science of Nanomaterials, 2015: 191-221.
[11] [11] ZHANG J B, SONG R G, ZHAO X, et al. Flexible graphene-assembled film-based antenna for wireless wearable sensor with miniaturized size and high sensitivity[J]. ACS Omega, 2020, 5(22): 12937-12943.
[12] [12] XIE T P, ZHANG L, WANG Y, et al. Graphene-based supercapacitors as flexible wearable sensor for monitoring pulse-beat[J]. Ceramics International, 2019, 45(2): 2516-2520.
[13] [13] NIE M, XIA Y H, YANG H S. A flexible and highly sensitive graphene-based strain sensor for structural health monitoring[J]. Cluster Computing, 2019, 22(4): 8217-8224.
[14] [14] ZHANG L L, ZHOU R, ZHAO X S. Graphene-based materials as supercapacitor electrodes[J]. Journal of Materials Chemistry, 2010, 20(29): 5983.
[15] [15] KE Q Q, WANG J. Graphene-based materials for supercapacitor electrodes-a review[J]. Journal of Materiomics, 2016, 2(1): 37-54.
[16] [16] CHEN L L, LIU Y, ZHAO Y, et al. Graphene-based fibers for supercapacitor applications[J]. Nanotechnology, 2016, 27(3): 032001.
[17] [17] BALANDIN A A, GHOSH S, TEWELDEBRHAN D, et al. Extremely high thermal conductivity of graphene: prospects for thermal management applications in silicon nanoelectronics[C]//2008 IEEE Silicon Nanoelectronics Workshop. June 15-16, 2008, Honolulu, HI, USA. IEEE, 2008: 1-2.
[18] [18] YIN Y, CHENG Z, WANG L, et al. Graphene, a material for high temperature devices-intrinsic carrier density, carrier drift velocity and lattice energy[J]. Scientific Reports, 2014, 4: 5758.
[19] [19] OCHOA H, CASTRO E V, KATSNELSON M I, et al. Temperature-dependent resistivity in bilayer graphene due to flexural phonons[J]. Physical Review B, 2011, 83(23): 235416.
[20] [20] WANG Z, KE Y Q, LIU D P, et al. Low bias short channel impurity mobility in graphene from first principles[J]. Applied Physics Letters, 2012, 101(9): 093102.
[21] [21] SHAH R, MOHIUDDIN T. Temperature dependent mobility in strained graphene[J]. Lecture Notes in Engineering & Computer Science, London: WCE,2011: 480.
[22] [22] BRESCIANI M, PALESTRI P, ESSENI D, et al. A better understanding of the low-field mobility in graphene nano-ribbons[C]//2009 Proceedings of the European Solid State Device Research Conference, Athens, Greece. IEEE, 2009: 480-483.
[23] [23] PENG Q, JI W, DE S. Mechanical properties of the hexagonal boron nitride monolayer: ab initio study[J]. Computational Materials Science, 2012, 56: 11-17.
[25] [25] GIOVANNETTI G, KHOMYAKOV P A, BROCKS G, et al. Publisher’s note: substrate-induced band gap in graphene on hexagonal boron nitride: ab initio density functional calculations[J]. Physical Review B, 2007, 76(7): 079902.
[26] [26] NIU B, ZHONG L X, HAO W, et al. First-principles study of the anisotropic thermal expansion and thermal transport properties in h-BN[J]. Science China Materials, 2021, 64(4): 953-963.
[27] [27] DUAN X M, YANG Z H, CHEN L, et al. Review on the properties of hexagonal boron nitride matrix composite ceramics[J]. Journal of the European Ceramic Society, 2016, 36(15): 3725-3737.
[28] [28] BALU R, ZHONG X L, PANDEY R, et al. Effect of electric field on the band structure of graphene/boron nitride and boron nitride/boron nitride bilayers[J]. Applied Physics Letters, 2012, 100(5): 052104.
[29] [29] LIU X Y, ZHANG H, CHENG X L. Tuning the electronic and magnetic properties of in-planar graphene/boron nitride heterostructure by doping 3d transition metal atom[J]. The Journal of Physical Chemistry C, 2019, 123(36): 22403-22412.
[30] [30] TIAN W, YUAN P F, YU Z L, et al. Electronic properties of doped hexagonal graphene[J]. Acta Physica Sinica, 2015, 64(4): 046102.
[31] [31] SATTAR A, MOAZZAM U, BASHIR A I, et al. Proposal of graphene band-gap enhancement via heterostructure of graphene with boron nitride in vertical stacking scheme[J]. Nanotechnology, 2021, 32(22): 225705.
[32] [32] FAN Y C, ZHAO M W, WANG Z H, et al. Tunable electronic structures of graphene/boron nitride heterobilayers[J]. Applied Physics Letters, 2011, 98(8): 083103.
[33] [33] ZHONG X L, YAP Y K, PANDEY R, et al. First-principles study of strain-induced modulation of energy gaps of graphene/BN and BN bilayers[J]. Physical Review B, 2011, 83(19): 193403.
[34] [34] PONOMARENKO L A, YANG R, MOHIUDDIN T M, et al. Effect of a high-kappa environment on charge carrier mobility in graphene[J]. Physical Review Letters, 2009, 102(20): 206603.
[35] [35] FARMER D B, CHIU H Y, LIN Y M, et al. Utilization of a buffered dielectric to achieve high field-effect carrier mobility in graphene transistors[J]. Nano Letters, 2009, 9(12): 4474-4478.
[36] [36] JESSEN B S, GAMMELGAARD L, THOMSEN M R, et al. Lithographic band structure engineering of graphene[J]. Nature Nanotechnology, 2019, 14(4): 340-346.
[37] [37] DEAN C R, YOUNG A F, MERIC I, et al. Boron nitride substrates for high-quality graphene electronics[J]. Nature Nanotechnology, 2010, 5(10): 722-726.
[38] [38] KAASBJERG K, THYGESEN K S, JACOBSEN K W. Unraveling the acoustic electron-phonon interaction in graphene[J]. Physical Review B, 2012, 85(16): 165440.
[39] [39] TANG S B, YU J P, LIU L X. Tunable doping and band gap of graphene on functionalized hexagonal boron nitride with hydrogen and fluorine[J]. Physical Chemistry Chemical Physics: PCCP, 2013, 15(14): 5067-5077.
Get Citation
Copy Citation Text
QI Yue, WANG Junqiang, ZHU Zehua, WU Chenyang, LI Mengwei. Electronic Structure Properties of Graphene and Graphene/Boron Nitride[J]. Journal of Synthetic Crystals, 2022, 51(4): 620
Category:
Received: Jan. 26, 2022
Accepted: --
Published Online: Jun. 14, 2022
The Author Email:
CSTR:32186.14.