Laser Technology, Volume. 45, Issue 6, 691(2021)
Study on fatigue crack growth of laser melting deposited high alloy steel
[1] [1] LU B H, LI D Ch, TIAN X Y. Development trends in additive manufacturing and 3D printing[J]. Engineering, 2015, 1(1):85-89.
[2] [2] GU D D, MA Ch L, XIA M J,et al. A multiscale understanding of the thermodynamic and kinetic mechanisms of laser additive manufacturing[J].Engineering, 2017, 3(5):675-684.
[3] [3] WANG H M. Materials’ fundamental issues of laser additive manufacturing for high-preformance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2690-2698(in Chinese).
[4] [4] TANG H B, WU Y, ZHNAG Sh Q, et al. Research status and deve-lopment trend of high performance large metallic components by laser additive manufacturing technique[J]. Journal of Net Shape Forming Engineering, 2019, 11(4):58-63(in Chinese).
[5] [5] CHEN F, YU J H, GUPTA N. Obfuscation of embedded codes in a-dditive manufactured components for product authentication[J]. Advanced Engineering Materials, 2019, 21(8): 1900146.
[6] [6] ZHANG W Y, TONG M M, HARRISON N M. Resolution, energy and time dependency on layer scaling in finite element modelling of laser beam powder bed fusion additive manufacturing[J]. Additive Manufacturing, 2019, 28: 610-620.
[7] [7] GU D D, ZHANG H M, CHEN H Y, et al. Laser additive manufacturing of high-performance metallic aerospace components[J].Chin-ese Journal of Lasers, 2020, 47(5): 0500002(in Chinese).
[8] [8] SHAMSAEI N, YADOLLAHIA A, BIANL, et al.An overview of direct laser deposition for additive manufacturing; Part Ⅱ: Mechanical behavior, process parameter optimization and control[J]. Additive Manufacturing, 2015,8: 12-35.
[9] [9] TANG Sh J, LI D Sh, QIN Q H, et al. Microstructure and mechanical properties of 80Ni20Cr alloy manufactured by laser 3D printing technology[J]. The Chinese Journal of Nonferrous Metals, 2017,27(8):1572-1579(in Chinese).
[10] [10] XU H Y, LI T, LI H B, et al. Study on quality prediction and path selection of 316L laser cladding[J]. Laser Technology, 2018,42(1):53-59(in Chinese).
[11] [11] PEGUES J W, SHAO S, SHAMSAEI N, et al. Fatigue of additive manufactured Ti-6Al-4V, Part Ⅰ: The effects of powder feedstock, manufacturing, and post-process conditions on the resulting microstructure and defects[J]. International Journal of Fatigue, 2020,132:105358.
[12] [12] PEGUES J W, ROACH M D, SHAMSAEI N. Effects of postprocess thermal treatments on static and cyclic deformation behavior of additively manufactured austenitic stainless steel[J]. Journal of Metals, 2020, 72(3):1355-1365.
[13] [13] CHOI Y R, SUN S D, LIU Q C, et al. Influence of deposition strategy on the microstructure and fatigue properties of laser metal deposited Ti-6Al-4V powder on Ti-6Al-4V substrate[J]. International Journal of Fatigue, 2020, 130:105236.
[14] [14] ZHAN Zh X. Experiments and numerical simulations for the fatigue behavior of a novel TA2-TA15 titanium alloy fabricated by laser melting deposition[J]. International Journal of Fatigue, 2019, 121:20-29.
[15] [15] LU S S, BAO R, WANG K, et al. Fatigue crack growth behaviour in laser melting deposited Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy[J]. Materials Science & Engineering, 2017, A690: 378-386.
[16] [16] NIKFAM M R, ZEINODDINI M, AGHEBATI F, et al. Experimental and XFEM modelling of high cycle fatigue crack growth in steel welded T-joints[J]. International Journal of Mechanical Sciences, 2019, 153/154: 178-193.
[17] [17] FU Y, LIAO Y S, LU D P, et al. HCF propagation with unilateral initial crack in 304 stainless steel piece by XFEM[J]. Iron and Steel, 2018,53(9):63-68(in Chinese).
[18] [18] JIE Zh Y, WANG W J, CHNE Ch, et al.Local approaches and XFEM used to estimate life of CFRP repaired cracked welded joints under fatigue loading [J/OL]. (2020-08-01)[2020-10-30].https://doi.org/10.1016/j.compstruct.2020.113251.
[19] [19] HAN X X. Simulation of cracks propagation and fatigue of diesel engine camshaft by laser melting deposition[D]. Beijing: Beijing University of Chemical Technology, 2019: 25-27(in Chinese).
[20] [20] WEI Q Sh, WANG X, ZHOU H, et al. Research on propagation of fatigue cracking in aluminum alloy transoms for high speed multiple units[J]. Rolling Stock,2019,57(4):1-4(in Chinese).
[21] [21] GRIFFITH A A.The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal Society of London, 1921, 221: 163-198.
[22] [22] HUSSAIN M, PU S, UNDERWOOD J. Strain energy release rate for a crack under combined mode Ⅰ and mode Ⅱ[M]. West Conshohocken, USA: Defense Technical Information Center, 1973: 1-78.
Get Citation
Copy Citation Text
DUAN Chenghong, WENG Zhiwei, LUO Xiangpeng, CHI Hanlin. Study on fatigue crack growth of laser melting deposited high alloy steel[J]. Laser Technology, 2021, 45(6): 691
Category:
Received: Jan. 18, 2021
Accepted: --
Published Online: Nov. 8, 2021
The Author Email: LUO Xiangpeng (xpluo@mail.buct.edu.cn)