Acta Optica Sinica, Volume. 45, Issue 11, 1110001(2025)

Semantic Information Driven Multimodal Image Fusion Network

Yulan Han*, Yaozu Zhai, Tong Wu, and Chaofeng Lan
Author Affiliations
  • School of Measurement-Control Technology and Communications Engineering, Harbin University of Science and Technology, Harbin 150080, Heilongjiang , China
  • show less
    Figures & Tables(11)
    SIDM-Fusion network model
    MEGB
    SDRB
    SBM
    Visual quality comparison on TNO dataset. (a) VIS; (b) IR; (c) DenseFuse; (d) RFN-Net; (e) FusionGAN; (f) SDNet; (g) U2Fusion; (h) SeAFusion; (i) PIAFusion; (j) ours
    Visual quality comparison on MSRS dataset. (a) VIS; (b) IR; (c) DenseFuse; (d) RFN-Net; (e) FusionGAN; (f) SDNet; (g) U2Fusion; (h) SeAFusion; (i) PIAFusion; (j) ours
    Visual quality comparison of important loss functions and module ablation studies. (a) VIS; (b) IR; (c) MEGB; (d) MEGB+Sobel; (e) MEGB*+SBM; (f) MEGB*+SDRB; (g) MEGB*+SPC-Net; (h) MEGB*+SBM+SDRB; (i) ours
    Visual quality comparison of semantic segmentation results. (a) VIS; (b) IR; (c) ours; (d) ground truth
    • Table 1. Performance comparison of different methods across multiple datasets

      View table

      Table 1. Performance comparison of different methods across multiple datasets

      DatasetAlgorithmMIVIF /bitAGSCDEN /bitQAB/F
      TNODenseFuse2.14080.67042.48951.59166.34220.2486
      RFN-Nest1.44280.81032.61091.77116.92850.2262
      FusionGAN2.20100.64572.36361.36886.51990.2405
      SDNet2.31620.75234.52521.54886.66700.4484
      U2Fusion2.48080.67873.48911.58626.42300.3272
      SeAFusion2.40480.79863.27721.71726.63070.5295
      PIAFusion3.48840.88354.42651.65406.89370.4496
      Ours3.98170.86215.50971.81177.06200.6217
      MSRSDenseFuse2.14280.66942.65281.50516.42640.2486
      RFN-Nest1.43280.73382.58481.63526.71510.2262
      FusionGAN2.25100.51542.36101.12576.46900.2405
      SDNet2.39660.62314.02281.39126.61340.4484
      U2Fusion2.41070.70613.85001.54886.62850.3272
      SeAFusion3.69170.69692.13291.49346.57340.5496
      PIAFusion3.73170.93004.97021.33636.80360.6295
      Ours4.57170.85945.43741.75896.94820.6817
    • Table 2. Quantitative Evaluation Results of Ablation Study

      View table

      Table 2. Quantitative Evaluation Results of Ablation Study

      GroupMEGBSobelSBMSDRBSPC-NetMIVIF /bitAGSCDEN /bitQAB/F
      12.24580.47823.13300.71545.02420.3887
      22.37270.59573.35831.27445.68380.3625
      32.31150.64863.36811.47405.73270.3415
      42.41620.67643.18441.56725.92840.4648
      52.58740.67192.91791.57805.88470.4783
      63.68840.73543.25511.65366.12370.5531
      73.90480.78543.37911.80576.40440.6495
    • Table 3. Segmentation performance of VIS, IR, and fused images at different times in the same scene

      View table

      Table 3. Segmentation performance of VIS, IR, and fused images at different times in the same scene

      Label classBackgroundCarPersonBikeCurveCar stopGuardrailColor toneBumpMean
      DayVIS0.98000.89060.55560.72600.57980.48240.80900.65080.56690.6934
      IR0.94820.54700.65640.08470.10320.12680.03680.00870.13040.2936
      Ours0.98340.90740.73320.73470.54690.53950.75880.63350.55340.7101
      NightVIS0.96520.69600.13050.58890.27500.17620.36660.37920.19430.4191
      IR0.95930.46800.71030.08730.25990.02920.00000.02230.19450.3034
      Ours0.97630.79020.72050.60570.44190.28810.33900.43540.22330.5356
      AllVIS0.97230.79330.34310.65750.42740.32930.58780.51500.38060.5563
      IR0.95380.50750.68340.08600.18160.07800.01840.01550.16250.2985
      Ours0.97990.84880.72690.67020.49440.41380.54890.53450.38840.6229
    Tools

    Get Citation

    Copy Citation Text

    Yulan Han, Yaozu Zhai, Tong Wu, Chaofeng Lan. Semantic Information Driven Multimodal Image Fusion Network[J]. Acta Optica Sinica, 2025, 45(11): 1110001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Jan. 26, 2025

    Accepted: Apr. 15, 2025

    Published Online: Jun. 23, 2025

    The Author Email: Yulan Han (hanyulan@hrbust.edu.cn)

    DOI:10.3788/AOS250551

    CSTR:32393.14.AOS250551

    Topics