Laser & Infrared, Volume. 54, Issue 2, 193(2024)
A point cloud classification model with improved graph convolution and multilayer pooling
[1] [1] Li You, Ibanez-Guzman J. Lidar for autonomous driving: the principles, challenges, and trends for automotive lidar and perception systems[J]. IEEE Signal Processing Magazine, 2020, 37(4): 50-61.
[2] [2] Xiong Jianghao, Hsiang E L, He Ziqian, et al. Augmented reality and virtual reality displays: emerging technologies and future perspectives[J]. Light: Science and Applications, 2021, 10(1): 216.
[3] [3] Wang Jingyi, Chen Jialuo, Sun Youcheng, et al. RobOT: robustness-oriented testing for deep learning systems[C]//IEEE/ACM the 43rd International Conference on Software Engineering (ICSE). Madrid, ES: IEEE, 2021: 300-311.
[4] [4] O'shea K, Nash R. An introduction to convolutional neural networks[J]. arXiv preprint arXiv: 08458, 2015.
[5] [5] Maturana D, Scherer S. Voxnet: a 3D convolutional neural network for real-time object recognition[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Hamburg, Germany: IEEE, 2015: 922-928.
[6] [6] Su Hang, Maji S, Kalogerakis E, et al. Multi-view convolutional neural networks for 3D shape recognition[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). 2015: 945-953.
[7] [7] Qi C R, Su Hao, Mo Kaichun, et al. Pointnet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 652-660.
[8] [8] Qi C R, Yi Li, Su Hao, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[J]. Advances in Neural Information Processing Systems, 2017, 30: 1-10.
[10] [10] Te G, Hu Wei, Zheng Amin, et al. RGCNN: regularized graph CNN for point cloud segmentation[C]//Proceedings of the 26th ACM International Conference on Multimedia, 2018: 746-754.
[11] [11] Wang Y, Sun Y, Liu Z, et al. Dynamic graph CNN for learning on point clouds[J]. Acm Transactions On Graphics, 2019, 38(5): 1-12.
[13] [13] Zagoruyko S, Komodakis N. Wide residual networks[J]. arXiv Preprint arXiv: 07146, 2016.
[16] [16] Scarselli F, Gori M, Tsol A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2008, 20(1): 61-80.
[17] [17] Bottou L. Stochastic gradient descent tricks[M]. Neural Networks: Tricks of the Trade. Springer, 2012: 421-436.
[18] [18] Loshchilov I, Hutter F. Sgdr: stochastic gradient descent with warm restarts[J]. arXiv Preprint arXiv: 1608.03983, 2016.
[19] [19] Wu Zhirong, Song Shuran, Khosla A, et al. 3D ShapeNets: a deep representation for volumetric shapes zhirong[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015: 1912-1920.
[20] [20] Xu Yifan, Fan Tianqi, Xu Mingye, et al. SpiderCNN: deep learning on point sets with parameterized convolutional filters[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 87-102.
[21] [21] Li Yangyan, Bu Rui, Sun Mingchao, et al. PointCNN: convolution on X-transformed points[C]//32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montreal, Canada, 2018.
[22] [22] Zhao Hengshuang, Jiang Li, Jia Jiaya, et al. Point transformer[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021: 16259-16268.
[23] [23] Han X F, Jin Y F, Cheng H X, et al. Dual transformer for point cloud analysis[J]. IEEE Transactions on Multimedia, 2022, 25: 5638-5648.
Get Citation
Copy Citation Text
ZHOU Rui-chuang, TIAN Jin, YAN Feng-ting, ZHU Tian-xiao. A point cloud classification model with improved graph convolution and multilayer pooling[J]. Laser & Infrared, 2024, 54(2): 193
Category:
Received: Apr. 17, 2023
Accepted: Jun. 4, 2025
Published Online: Jun. 4, 2025
The Author Email: TIAN Jin (jintian0120@foxmail.com)