Optics and Precision Engineering, Volume. 33, Issue 5, 777(2025)

Shape adaptive feature aggregation network for point cloud classification and segmentation

Zhihao JIANG1, Meixiang ZHANG1, Weitao XUE2, Lina FU1, Jing WEN1, Yongqiang LI2、*, and Hong HUANG1、*
Author Affiliations
  • 1Key Laboratory of Optoelectronic Technology and System, Ministry of Education, Chongqing University, Chongqing400044, China
  • 2Product Testing Center, Beijing Institute of Space Machinery and Electronics, Beijing100094, China
  • show less
    References(34)

    [1] 张磊, 徐孝彬, 曹晨飞. 基于动态特征剔除的图像与点云融合的机器人位姿估计方法[J]. 中国激光, 49(2022).

         ZHANG L, XU X B, CAO CH F et al. Robot pose estimation method based on image and point cloud fusion with dynamic feature elimination[J]. Chinese Journal of Lasers, 49(2022).

    [2] PARK Y, LEPETIT V. Multiple 3D Object tracking for augmented reality[C], 15, 117-120(2008).

    [3] CHEN Z, ZHANG H J, HU D L et al. Point-cloud transformer for 3-D electrical impedance tomography[J]. IEEE Transactions on Instrumentation Measurement, 73, 3413161(2024).

    [4] 曾庆轩, 李锵, 聂为之. 基于伪占用区在线点云去除的激光雷达SLAM算法[J]. 光学学报, 43, 2028001(2023).

         ZENG Q X, LI Q, NIE W Z. Lidar SLAM algorithm based on online point cloud removal in pseudo occupied area[J]. Acta Optica Sinica, 43, 2028001(2023).

    [5] RABBANI T, VAN DEN HEUVEL F, VOSSELMANN G. Segmentation of point clouds using smoothness constraint[C], 248-253(2006).

    [6] SAMPATH A, SHAN J. Segmentation and reconstruction of polyhedral building roofs from aerial lidar point clouds[J]. IEEE Transactions on Geoscience and Remote Sensing, 48, 1554-1567(2010).

    [7] DUDA R O, HART P E. Use of the Hough transformation to detect lines and curves in pictures[J]. Communications of the ACM, 15, 11-15(1972).

    [8] FISCHLER M A, BOLLES R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications on the ACM, 24, 381-395(1987).

    [9] WANG F F, ZHAO H J, LI N et al. Spectral-spatial attention residual networks for hyperspectral image classification[J]. Acta Photonica Sinica, 52, 207-225(2023).

         汪菲菲, 赵慧洁, 李娜. 基于光谱-空间注意力残差网络的高光谱图像分类[J]. 光子学报, 52, 207-225(2023).

    [10] 黄鸿, 杨沂川, 王龙. 面向病理图像分割的边缘感知网络[J]. 光子学报, 53, 85-97(2024).

         HUANG H, YANG Y CH, WANG L et al. Boundary perception network for pathological image segmentation[J]. Acta Photonica Sinica, 53, 85-97(2024).

    [11] ZHANG C, HU P P, ZHU X W et al. Intelligent online detection of laser welding defects based on high density point clouds (Invited)[J]. Chinese Journal of Lasers, 51(2024).

         张臣, 胡佩佩, 朱新旺. 基于高密度点云的激光焊接缺陷智能在线检测(特邀)[J]. 中国激光, 51(2024).

    [12] SU H, MAJI S, KALOGERAKIS E et al. Multi-view convolutional neural networks for 3D shape recognition[C], 7, 945-953(2015).

    [13] MATURANA D, SCHERER S. VoxNet: a 3D Convolutional Neural Network for real-time object recognition[C], 922-928(2015).

    [14] CHARLES R Q, HAO S, MO K C et al. PointNet: deep learning on point sets for 3D classification and segmentation[C], 21, 77-85(2017).

    [15] QI C R, YI L, SU H et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C], 5105-5114(2017).

    [16] LIN Z H, HUANG S Y, WANG Y F. Learning of 3D graph convolution networks for point cloud analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1(2021).

    [17] LI G H, MULLER M, THABET A et al. DeepGCNs: can GCNs go As deep As CNNs?[C], 9266-9275(2019).

    [18] WANG Y, SUN Y B, LIU Z W et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 38, 1-12(2019).

    [19] WU Z R, SONG S R, KHOSLA A et al. 3D ShapeNets: a deep representation for volumetric shapes[C], 7, 1912-1920(2015).

    [20] CHANG A X, FUNKHOUSER T, GUIBAS L et al. ShapeNet: an information-rich 3D model repository[webpage]. arxiv, 2015-1(03012).

    [21] ARMENI I, SENER O, ZAMIR A R et al. 3D semantic parsing of large-scale indoor spaces[C], 27, 1534-1543(2016).

    [22] WU W X, QI Z A, LI F X. PointConv: deep convolutional networks on 3D point clouds[C], 15, 9613-9622(2019).

    [23] LIU Y H, TIAN B, LV Y S et al. Point cloud classification using content-based transformer via clustering in feature space[J]. CAA Journal of Automatica Sinica, 11, 231-239.

    [24] WANG G H, ZHAI Q Y, LIU H. Cross self-attention network for 3D point cloud[J]. Knowledge-Based Systems, 247, 108769(2022).

    [25] ZHANG J J, ZHANG Z X, WANG L et al. Kernel-based feature aggregation framework in point cloud networks[J]. Pattern Recognition, 139, 109439(2023).

    [26] BOULCH A. ConvPoint: Continuous convolutions for point cloud processing[J]. Computers & Graphics, 88, 24-34(2020).

    [27] CHEN J J, KAKILLIOGLU B, VELIPASALAR S. Background-aware 3-D point cloud segmentation with dynamic point feature aggregation[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-12(2022).

    [28] LI Y, BU R, SUN M et al. PointCNN: convolution on Χ-transformed points[C], 828-838(2018).

    [29] WANG S L, SUO S, MA W C et al. Deep parametric continuous convolutional neural networks[C], 18, 2589-2597(2018).

    Tools

    Get Citation

    Copy Citation Text

    Zhihao JIANG, Meixiang ZHANG, Weitao XUE, Lina FU, Jing WEN, Yongqiang LI, Hong HUANG. Shape adaptive feature aggregation network for point cloud classification and segmentation[J]. Optics and Precision Engineering, 2025, 33(5): 777

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 23, 2024

    Accepted: --

    Published Online: May. 20, 2025

    The Author Email: Yongqiang LI (hhuang@cqu.edu.cn)

    DOI:10.37188/OPE.20253305.0777

    Topics