Optics and Precision Engineering, Volume. 33, Issue 5, 777(2025)
Shape adaptive feature aggregation network for point cloud classification and segmentation
[1] 张磊, 徐孝彬, 曹晨飞. 基于动态特征剔除的图像与点云融合的机器人位姿估计方法[J]. 中国激光, 49(2022).
ZHANG L, XU X B, CAO CH F et al. Robot pose estimation method based on image and point cloud fusion with dynamic feature elimination[J]. Chinese Journal of Lasers, 49(2022).
[2] PARK Y, LEPETIT V. Multiple 3D Object tracking for augmented reality[C], 15, 117-120(2008).
[3] CHEN Z, ZHANG H J, HU D L et al. Point-cloud transformer for 3-D electrical impedance tomography[J]. IEEE Transactions on Instrumentation Measurement, 73, 3413161(2024).
[4] 曾庆轩, 李锵, 聂为之. 基于伪占用区在线点云去除的激光雷达SLAM算法[J]. 光学学报, 43, 2028001(2023).
ZENG Q X, LI Q, NIE W Z. Lidar SLAM algorithm based on online point cloud removal in pseudo occupied area[J]. Acta Optica Sinica, 43, 2028001(2023).
[5] RABBANI T, VAN DEN HEUVEL F, VOSSELMANN G. Segmentation of point clouds using smoothness constraint[C], 248-253(2006).
[6] SAMPATH A, SHAN J. Segmentation and reconstruction of polyhedral building roofs from aerial lidar point clouds[J]. IEEE Transactions on Geoscience and Remote Sensing, 48, 1554-1567(2010).
[7] DUDA R O, HART P E. Use of the Hough transformation to detect lines and curves in pictures[J]. Communications of the ACM, 15, 11-15(1972).
[8] FISCHLER M A, BOLLES R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications on the ACM, 24, 381-395(1987).
[9] WANG F F, ZHAO H J, LI N et al. Spectral-spatial attention residual networks for hyperspectral image classification[J]. Acta Photonica Sinica, 52, 207-225(2023).
汪菲菲, 赵慧洁, 李娜. 基于光谱-空间注意力残差网络的高光谱图像分类[J]. 光子学报, 52, 207-225(2023).
[10] 黄鸿, 杨沂川, 王龙. 面向病理图像分割的边缘感知网络[J]. 光子学报, 53, 85-97(2024).
HUANG H, YANG Y CH, WANG L et al. Boundary perception network for pathological image segmentation[J]. Acta Photonica Sinica, 53, 85-97(2024).
[11] ZHANG C, HU P P, ZHU X W et al. Intelligent online detection of laser welding defects based on high density point clouds (Invited)[J]. Chinese Journal of Lasers, 51(2024).
张臣, 胡佩佩, 朱新旺. 基于高密度点云的激光焊接缺陷智能在线检测(特邀)[J]. 中国激光, 51(2024).
[12] SU H, MAJI S, KALOGERAKIS E et al. Multi-view convolutional neural networks for 3D shape recognition[C], 7, 945-953(2015).
[13] MATURANA D, SCHERER S. VoxNet: a 3D Convolutional Neural Network for real-time object recognition[C], 922-928(2015).
[14] CHARLES R Q, HAO S, MO K C et al. PointNet: deep learning on point sets for 3D classification and segmentation[C], 21, 77-85(2017).
[15] QI C R, YI L, SU H et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C], 5105-5114(2017).
[16] LIN Z H, HUANG S Y, WANG Y F. Learning of 3D graph convolution networks for point cloud analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1(2021).
[17] LI G H, MULLER M, THABET A et al. DeepGCNs: can GCNs go As deep As CNNs?[C], 9266-9275(2019).
[18] WANG Y, SUN Y B, LIU Z W et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 38, 1-12(2019).
[19] WU Z R, SONG S R, KHOSLA A et al. 3D ShapeNets: a deep representation for volumetric shapes[C], 7, 1912-1920(2015).
[20] CHANG A X, FUNKHOUSER T, GUIBAS L et al. ShapeNet: an information-rich 3D model repository[webpage]. arxiv, 2015-1(03012).
[21] ARMENI I, SENER O, ZAMIR A R et al. 3D semantic parsing of large-scale indoor spaces[C], 27, 1534-1543(2016).
[22] WU W X, QI Z A, LI F X. PointConv: deep convolutional networks on 3D point clouds[C], 15, 9613-9622(2019).
[23] LIU Y H, TIAN B, LV Y S et al. Point cloud classification using content-based transformer
[24] WANG G H, ZHAI Q Y, LIU H. Cross self-attention network for 3D point cloud[J]. Knowledge-Based Systems, 247, 108769(2022).
[25] ZHANG J J, ZHANG Z X, WANG L et al. Kernel-based feature aggregation framework in point cloud networks[J]. Pattern Recognition, 139, 109439(2023).
[26] BOULCH A. ConvPoint: Continuous convolutions for point cloud processing[J]. Computers & Graphics, 88, 24-34(2020).
[27] CHEN J J, KAKILLIOGLU B, VELIPASALAR S. Background-aware 3-D point cloud segmentation with dynamic point feature aggregation[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-12(2022).
[28] LI Y, BU R, SUN M et al. PointCNN: convolution on Χ-transformed points[C], 828-838(2018).
[29] WANG S L, SUO S, MA W C et al. Deep parametric continuous convolutional neural networks[C], 18, 2589-2597(2018).
Get Citation
Copy Citation Text
Zhihao JIANG, Meixiang ZHANG, Weitao XUE, Lina FU, Jing WEN, Yongqiang LI, Hong HUANG. Shape adaptive feature aggregation network for point cloud classification and segmentation[J]. Optics and Precision Engineering, 2025, 33(5): 777
Category:
Received: Sep. 23, 2024
Accepted: --
Published Online: May. 20, 2025
The Author Email: Yongqiang LI (hhuang@cqu.edu.cn)