Journal of Applied Optics, Volume. 46, Issue 1, 1(2025)
Summary and prospect of mechanism position measurement methods for segmented space optics systems
[1] HU Bin, LI Chuang, XIANG Meng et al. Development and prospects of deployable space optical telescope technology[J]. Infrared and Laser Engineering, 50, 347-362(2021).
[2] ALLEN M R, KIM J J, AGRAWAL B N. Correction of an active space telescope mirror using a deformable mirror in a woofer-tweeter configuration[J]. Journal of Astronomical Telescopes Instruments and Systems, 2, 029001(2016).
[3] ALLEN M R, KIM J J, AGRAWAL B N. Correction of an active space telescope mirror using a gradient approach and an additional deformable mirror[C], 118-128(2015).
[4] CLAMPIN M. Overview of the James Webb space telescope observatory[C], 55-64(2011).
[5] ACTON D S, KNIGHT J S, CONTOS A et al. Wavefront sensing and controls for the James Webb Space Telescope[C], 877-887(2012).
[6] STEPHANIE B L. Active optics in deployable systems for future EO and science missions[R](2020).
[7] CHANAN G, OHARA C, TROY M. Phasing the mirror segments of the Keck telescopes II: the narrow-band phasing algorithm[J]. Applied Optics, 39, 4706-4714(2000).
[8] CHANAN G, TROY M. Strehl ratio and modulation transfer function for segmented mirror telescopes as functions of segment phase error[J]. Applied Optics, 38, 6642-6647(1999).
[9] CARRIER A, AUBURN J N, CHAMPAGNE P et al. Development and demonstration of a precision latch for deployable optical systems[C], 286-303(2003).
[10] CARRIER A, AUBURN J N, CLAPPIER R et al. Development and microdynamics characterization of a deployable petal assembly at full scale[C], 254-273(2003).
[11] MESRINE M, THOMAS E, GARIN S et al. High resolution earth observation from geostationary orbit by optical aperture synthesys[C], 71-77(2017).
[12] POSTMAN M, SPARKS W B, LIU F C et al. Using the ISS as a testbed to prepare for the next generation of space-based telescopes[C], 644-653(2012).
[13] KRUEGER T, SWADE D. OpTIIX mission overview and education/public outreach[C], 475, 11-14(2013).
[14] BATTERSBY C, ARMUS L, BERGIN E et al. The origins space telescope[J]. Nature Astronomy, 2, 596-599(2018).
[15] LEISAWITZ D, AMATUCCI E, ALLEN L et al. Origins space telescope: trades and decisions leading to the baseline mission concept[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 7, 011014(2021).
[16] GUPTA G, ARYA M, GOEL A et al. Detector development for the lunar crater radio telescope[C], 1-5(2022).
[17] ARYA M, PISANTI D, VERNIANI A et al. Kilometer-scale parabolic reflector for a radio telescope in a lunar crater[C], 1-18(2023).
[18] BANDYOPADHYAY S, LAZIO J, STOICA A et al. Conceptual ideas for radio telescope on the far side of the moon[C], 1-10(2018).
[19] BANDYIPADHYAY S, MCGAREY P, GOEL A et al. Conceptual design of the lunar crater radio telescope (LCRT) on the far side of the moon[C], 1-25(2021).
[20] ALBADA G D V, LAGERBERG J M, HERTZBERGER L O et al. A low-cost pose-measuring system for robot calibration[J]. Robotics and Autonomous Systems, 15, 207-227(2002).
[21] CAI Zeliang. Research on measurement method of end position of industrial robot based on machine vision[D](2022).
[22] WANG Q, JIN B, ZHANG C. Kinematic calibration of a hexapod robot based on monocular vision[J]. Machine Vision and Applications, 33(6), 1-11(2022).
[23] JANOCHA H, DIEWALD B. New methods of measuring and calibrating robots[C], 688-699(1995).
[24] WANG Mingji, CHEN Qiumeng, REN Fushen. Target ranging system based on binocular vision[J]. Automation and Instrumentation, 5-8(2022).
[25] HUANG Xianzhen, PENG Shuping. Research on target recognition and location based on binocular vision and grasping of manipulator[J]. Automation and Instrumentation, 37, 32-35(2022).
[27] BISOGNI L, MOLLAIYAN R, PETTINARI M et al. Automatic calibration of a two-axis rotary table for 3D scanning purposes[J]. Sensors, 20, 7107(2020).
[28] ANDY Z, YU K T, SONG S R et al. Multi-view self-supervised deep learning for 6D pose estimation in the amazon picking challenge[C], 1383-1386(2017).
[29] SATO M, TAKAHASHI A, NAMIKI A. High-speed catching by multi-vision robot hand[C], 9131-9136(2020).
[31] NEWMAN W S, OSBORN D W. A new method for kinematic parameter calibration via laser line tracking[C], 160-165(1993).
[32] NEWMAN W S, BIRKHIMER C E, HORNING R J et al. Calibration of a motoman P8 robot based on laser tracking[C], 3597-3602(2000).
[33] SHUAI Siyuan. Test and evaluation of the motion performance of industrial robot based on laser tracker[D](2022).
[37] NUBIOLA A, BONEV I A. Absolute calibration of an ABB IRB 1 600 robot using a laser tracker[J]. Robotics and Computer-Integrated Manufacturing, 29, 236-245(2013).
[38] NAKAMURA O, GOTO M. Four-beam laser interferometry for three-dimensional microscopic coordinate measurement[J]. Applied Optics, 33, 31-36(1994).
[39] CHEN H F, JIANG B, SHI Z Y et al. Uncertainty modeling of the spatial coordinate error correction system of the CMM based on laser tracer multi-station measurement[J]. Measurement Science and Technology, 30, 025007(2019).
[40] LIU Xudong, CHEN Zhangwei, WANG Zhirong et al. Dynamic trajectory measurement method of industrial robot based on three base stations cooperation[J]. Metrology and Measurement Technique, 49, 62-65(2022).
[41] CANUTO E, MUSSO F. Active angular stabilization of the GAIA space telescope through laser interferometry[J]. IFAC Proceedings Volumes, 37, 955-960(2004).
[42] CHEN Zhangwei, ZU Hongfei, HONG Wei et al. The accurate robot pose measurement based on multi base station laser tracker[J]. Metrology and Measurement Technology, 41, 10-16(2021).
[43] NAN Rendong, JIANG Peng. The 500 m aperture spherical radio telescope[J]. Journal of Mechanical Engineering, 53, 1-3(2017).
[44] CHENG Zhifeng. On position and orientation measurement technics of FAST's feed cabin by laser tracker[D](2019).
[45] CAI Xuming. Research on micro-vision positioning system for MEMS gyroscope[D](2023).
[46] FAN Zenghua, RONG Weibin, LIU Zixiao et al. A dynamic detection method of capillary forces based on microscopic vision[J]. China Mechanical Engineering, 31, 2290-2294(2020).
[47] LU Guizhang, ZHANG Jianxun, ZHAO Xin. Micro operation robot system oriented to biological experiment[J]. Journal of Nankai University (Natural Science), 32, 42-46(1999).
[48] TAMADAZTE B, DEMBELE S, FORTIER G et al. VI micromanipulation using multiscale visual servoing[C], 977-982(2008).
[50] TAMADAZTE B, ARNOULD T, DEMBELE S et al. Real-time vision-based microassembly of 3D MEMS[C], 88-93(2009).
[51] LUAN Fei, JIANG Bobin, RONG Weibin et al. Cone-shell target automatic precision micro-assembly system[J]. ROBOT, 38, 563-568(2016).
[52] ANDRÉ A N, LEHMANN O, GOVILAS J et al. Automating robotic micro-assembly of fluidic chips and single fiber compression tests based-on XYΘ visual measurement with high-precision fiducial markers[C], 21, 353-366(2024).
[53] LEKBERG O. Electronic speckle pattern interferometry[J]. Physics in Technology, 11(1), 16(1980).
[54] BHADURI B, TAY C J, QUAN C et al. Two wavelength simultaneous DSPI and DSP for 3D displacement field measurements[J]. Optics Communications, 284(10), 2437-2440(2011).
[55] XIE X, CHEN X, LI J R et al. Measurement of in-plane strain with dual beam spatial phase-shift digital shearography[J]. Measurement Science and Technology, 26(11), 115202(2015).
[56] BIANCO G, LUIGI B, CHRISTOPHER A G et al. Full-field displacement measurement of corneoscleral shells by combining multi-camera speckle interferometry with 3D shape reconstruction[J]. Journal of the Mechanical Behavior of Biomedical Materials, 103, 103560(2020).
[57] SAIF B, MARCEL B, PERRY G et al. Measurement of large cryogenic structures using a spatially phase-shifted digital speckle pattern interferometer[J]. Applied Optics, 47(6), 737-745(2008).
[58] SAIF B, PERRY G, MARCEL B et al. Tracking sub-nanometer thermal structural changes with speckle interferometry[J]. Applied Optics, 59(22), 204-208(2020).
[59] LI Ziqiang, LI Xinyang, GAO Zeyu et al. Review of wavefront sensing technology in adaptive optics based on deep learning[J]. High Power Laser and Particle Beams, 33, 5-17(2021).
[60] SZEGEDY C, VANHOUCKE V, IOFFE S et al. Rethinking the inception architecture for computer vision[C], 2818-2826(2016).
[61] NISHIZAKI Y, VALDIVIA M, HORISAKI R et al. Deep learning wavefront sensing[J]. Optics Express, 27, 240-251(2019).
[62] WANG M H, GUO W, YUAN X H. Single-shot wavefront sensing with deep neural networks for free-space optical communications[J]. Optics Express, 29, 3465-3478(2021).
[63] PAINE S W, FIENUP J R. Machine learning for improved image-based wavefront sensing[J]. Optics Letters, 43, 1235-1238(2018).
[64] SABATKE E, SCOTT A, JOHN S et al. Using multifield measurements to eliminate alignment degeneracies in the JWST testbed telescope[C], 668707-1-668707-10(2007).
[65] KIM S, YANG H S, LEE Y W et al. Merit function regression method for efficient alignment control of two-mirror optical systems[J]. Optics Express, 15, 5059-5068(2007).
[66] ZHAO Dong, ZHANG Xiaofang, CHEN Weilin et al. Secondary mirror position error detection method based on multi-field wavefront sensing[J]. Infrared and Laser Engineering, 47, 331-339(2018).
[67] CAO Yuze, MA Wenli. Application of two step sensitivity matrix method in Cassegrain telescope alignment[J]. Opto-Electron Eng, 47, 5-12(2020).
[68] MULLER H, CHIOW S W, LONG Q et al. Active sub-Rayleigh alignment of parallel or antiparallel laser beams[J]. Optics Letters, 30, 3323-3325(2005).
[69] SCHULDT T, GOHLKE M, KOGEL H et al. Picometre and nanoradian heterodyne interferometry and its application in dilatometry and surface metrology[J]. Measurement Science and Technology, 23, 1-7(2012).
[70] YAN H, DUAN H Z, LI L T et al. A dual-heterodyne laser interferometer for simultaneous measurement of linear and angular displacements[J]. Review of Scientific Instruments, 86, 454-459(2015).
[71] ZHANG Shanting, GUO Hanming. A heterodyne interferometry for simultaneous measurement of four degrees of freedom[J]. Optical Instruments, 42, 75-81(2020).
[72] SHI F, CATHERINE M O, GARY C et al. Experimental verification of dispersed fringe sensing as a segment phasing technique using the Keck telescope[J]. Applied Optics, 43(23), 4474-4481(2004).
[73] FEINBERG L D, BRUCE H D, DAVID L et al. TRL-6 for JWST wavefront sensing and control[C], 67-90(2007).
[74] SCHOLZ R D, BASTIAN U. Simulated dispersed fringes of an astrometric interferometry mission[C], 815-818(1997).
[75] SHI F, BASINGER S A, REDDING D C. Performance of dispersed fringe sensor in the presence of segmented mirror aberrations: modeling and simulation[C], 284-295(2006).
[76] ALBANESE M, ALLAN W, ANDY J et al. Verification of the James Webb space telescope coarse phase sensor using the Keck telescope[C], 296-304(2006).
[77] HAFFERT S Y et al. The holographic dispersed fringe sensors (HDFS): phasing the Giant Magellan Telescope[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 8, 021513(2022).
[78] SPECHLER J A, DANIEL J H, NORBERT S et al. Advanced DFS: a dispersed fringe sensing algorithm insensitive to small calibration errors[C], 1778-1787(2010).
[79] REDDING D C, SHI F, BASINGER S A et al. Wavefront sensing and control for large space optics[C], 4, 1729-1744(2003).
[80] REDDING D C, GREGORY H, GREGORY S A et al. Active optics for a 16-meter advanced technology large aperture space telescope[R](2008).
Get Citation
Copy Citation Text
Yuchen LI, Chao QIN, Qichang AN, Zhenbang XU. Summary and prospect of mechanism position measurement methods for segmented space optics systems[J]. Journal of Applied Optics, 2025, 46(1): 1
Category:
Received: Dec. 11, 2023
Accepted: --
Published Online: Apr. 1, 2025
The Author Email: Qichang AN (安其昌), Zhenbang XU (徐振邦)