Chinese Journal of Lasers, Volume. 50, Issue 4, 0402003(2023)

Effects of Laser Scan Strategies on Densification, Residual Stress, and Mechanical Properties of W-Ti Heavy Alloy Fabricated by Laser Powder Bed Fusion

Meng Guo1,2, Kai Liu1,2, Jingjia Sun1,2, and Dongdong Gu1,2、*
Author Affiliations
  • 1College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu, China
  • 2Jiangsu Provincial Engineering Laboratory for Laser Additive Manufacturing of High-Performance Metallic Components, Nanjing 210016, Jiangsu, China
  • show less
    References(29)

    [1] Gu D D, Shi X Y, Poprawe R et al. Material-structure-performance integrated laser-metal additive manufacturing[J]. Science, 372, eabg1487(2021).

    [2] Khairallah S A, Martin A A, Lee J R I et al. Controlling interdependent meso-nanosecond dynamics and defect generation in metal 3D printing[J]. Science, 368, 660-665(2020).

    [3] Yang X G, Zhou Y, Xi S Q et al. Additively manufactured fine grained Ni6Cr4WFe9Ti high entropy alloys with high strength and ductility[J]. Materials Science and Engineering: A, 767, 138394(2019).

    [4] Zhang J, Long L C, Wu Q. Simulation of residual stress of SLM additive manufactured micro-annular Inconel718 components[J]. Journal of Mechanical Engineering, 57, 172-181(2021).

    [5] Gu D D, Zhang H M, Chen H Y et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 47, 0500002(2020).

    [6] Yang Y Q, Song C H, Wang D. Selective laser melting and its applications on personalized medical parts[J]. Journal of Mechanical Engineering, 50, 140-151(2014).

    [7] Huo P C, Zhao Z Y, Du W B et al. Deformation strengthening mechanism of in situ TiC/TC4 alloy nanocomposites produced by selective laser melting[J]. Composites Part B: Engineering, 225, 109305(2021).

    [8] Cao Y, Wei H L, Yang T et al. Printability assessment with porosity and solidification cracking susceptibilities for a high strength aluminum alloy during laser powder bed fusion[J]. Additive Manufacturing, 46, 102103(2021).

    [9] Pan A Q, Zhang H, Wang Z M. Process parameters and microstructure of Ni-based single crystal superalloy processed by selective laser melting[J]. Chinese Journal of Lasers, 46, 1102007(2019).

    [10] Wang Y M, Voisin T, McKeown J T et al. Additively manufactured hierarchical stainless steels with high strength and ductility[J]. Nature Materials, 17, 63-71(2018).

    [11] Philips N R, Carl M, Cunningham N J. New opportunities in refractory alloys[J]. Metallurgical and Materials Transactions A, 51, 3299-3310(2020).

    [12] Bose A, Schuh C A, Tobia J C et al. Traditional and additive manufacturing of a new tungsten heavy alloy alternative[J]. International Journal of Refractory Metals and Hard Materials, 73, 22-28(2018).

    [13] Xue J Q, Feng Z, Tang J G et al. Selective laser melting additive manufacturing of tungsten with niobium alloying: microstructure and suppression mechanism of microcracks[J]. Journal of Alloys and Compounds, 874, 159879(2021).

    [14] Tan C L, Zhou K S, Ma W Y et al. Selective laser melting of high-performance pure tungsten: parameter design, densification behavior and mechanical properties[J]. Science and Technology of Advanced Materials, 19, 370-380(2018).

    [15] Vrancken B, Ganeriwala R K, Matthews M J. Analysis of laser-induced microcracking in tungsten under additive manufacturing conditions: experiment and simulation[J]. Acta Materialia, 194, 464-472(2020).

    [16] Veverka J, Vilémová M, Chlup Z et al. Evolution of carbon and oxygen concentration in tungsten prepared by field assisted sintering and its effect on ductility[J]. International Journal of Refractory Metals and Hard Materials, 97, 105499(2021).

    [17] Zhou X, Liu W. Melting and solidifying behavior in single layer selective laser of pure tungsten powder[J]. Chinese Journal of Lasers, 43, 0503006(2016).

    [18] Yan A R, Yang T T, Wang Y L et al. Effect of tungsten powder particle size and shape on consolidation and microstructure of W-xCu composites by selective laser melting[J]. Chinese Journal of Lasers, 43, 0203007(2016).

    [19] Chen J H, Zhao C C, Li K L et al. Formability and controlling of cracks in laser powder bed fusion of tungsten-5% tantalum carbide alloys[J]. Chinese Journal of Lasers, 48, 1502006(2021).

    [20] Vrancken B, King W E, Matthews M J. In-situ characterization of tungsten microcracking in selective laser melting[J]. Procedia CIRP, 74, 107-110(2018).

    [21] Chookajorn T, Schuh C A. Nanoscale segregation behavior and high-temperature stability of nanocrystalline W-20 at.% Ti[J]. Acta Materialia, 73, 128-138(2014).

    [22] Dai W L, Liang S H, Luo Y T et al. Effect of W powders characteristics on the Ti-rich phase and properties of W-10 wt.% Ti alloy[J]. International Journal of Refractory Metals and Hard Materials, 50, 240-246(2015).

    [23] Liu K, Gu D D, Guo M et al. Effects of processing parameters on densification behavior, microstructure evolution and mechanical properties of W-Ti alloy fabricated by laser powder bed fusion[J]. Materials Science and Engineering: A, 829, 142177(2022).

    [24] Yamamoto T, Hara M, Hatano Y. Effects of fabrication conditions on the microstructure, pore characteristics and gas retention of pure tungsten prepared by laser powder bed fusion[J]. International Journal of Refractory Metals and Hard Materials, 95, 105410(2021).

    [25] Wang D Z, Li K L, Yu C F et al. Cracking behavior in additively manufactured pure tungsten[J]. Acta Metallurgica Sinica (English Letters), 32, 127-135(2019).

    [26] Chen H Y, Gu D D, Ge Q et al. Role of laser scan strategies in defect control, microstructural evolution and mechanical properties of steel matrix composites prepared by laser additive manufacturing[J]. International Journal of Minerals, Metallurgy and Materials, 28, 462-474(2021).

    [27] Iveković A, Montero-Sistiaga M L, Vanmeensel K et al. Effect of processing parameters on microstructure and properties of tungsten heavy alloys fabricated by SLM[J]. International Journal of Refractory Metals and Hard Materials, 82, 23-30(2019).

    [28] Liu Y, Yang Y Q, Wang D. A study on the residual stress during selective laser melting (SLM) of metallic powder[J]. The International Journal of Advanced Manufacturing Technology, 87, 647-656(2016).

    [29] Zhu P F, Gou G Q, Li Z F et al. Study of residual stresses in A7N01 aluminum alloy with X-ray diffraction Debye ring analysis[J]. International Journal of Modern Physics B, 33, 1940032(2019).

    Tools

    Get Citation

    Copy Citation Text

    Meng Guo, Kai Liu, Jingjia Sun, Dongdong Gu. Effects of Laser Scan Strategies on Densification, Residual Stress, and Mechanical Properties of W-Ti Heavy Alloy Fabricated by Laser Powder Bed Fusion[J]. Chinese Journal of Lasers, 2023, 50(4): 0402003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser manufacturing

    Received: Apr. 27, 2022

    Accepted: May. 19, 2022

    Published Online: Feb. 2, 2023

    The Author Email: Gu Dongdong (dongdonggu@nuaa.edu.cn)

    DOI:10.3788/CJL220797

    Topics