Chinese Journal of Lasers, Volume. 47, Issue 2, 207020(2020)
Applications of Holographic Optical Tweezers in Biological Research
[1] Ashkin A, Dziedzic J M, Bjorkholm J E et al. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Optics Letters, 11, 288-290(1986).
[2] Ashkin A. Acceleration and trapping of particles by radiation pressure[J]. Physical Review Letters, 24, 156-159(1970).
[3] Ashkin A, Dziedzic J M. Optical levitation of liquid drops by radiation pressure[J]. Science, 187, 1073-1075(1975).
[4] Garcés-Chávez V, Roskey D, Summers M et al. Optical levitation in a Bessel light beam[J]. Applied Physics Letters, 85, 4001-4003(2004).
[5] He H. Friese M E J, Heckenberg N R, et al. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity[J]. Physical Review Letters, 75, 826-829(1995).
[6] Simpson N B, Dholakia K, Allen L et al. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner[J]. Optics Letters, 22, 52-54(1997).
[7] Friese M E J, Enger J, Rubinsztein-Dunlop H et al. Optical angular-momentum transfer to trapped absorbing particles[J]. Physical Review A, 54, 1593-1596(1996).
[8] Garcés-Chávez V. McGloin D, Padgett M J, et al. Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle[J]. Physical Review Letters, 91, 093602(2003).
[9] Curtis J E, Grier D G. Structure of optical ortices[J]. Physical Review Letters, 90, 133901(2003).
[10] Smith S B, Cui Y, Bustamante C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules[J]. Science, 271, 795-799(1996).
[11] Wang M D, Yin H, Landick R et al. Stretching DNA with optical tweezers[J]. Biophysical Journal, 72, 1335-1346(1997).
[13] Visscher K, Gross S P, Block S M. Construction of multiple-beam optical traps with nanometer-resolution position sensing[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2, 1066-1076(1996).
[14] MacDonald M P, Spalding G C, Dholakia K. Microfluidic sorting in an optical lattice[J]. Nature, 426, 421-424(2003).
[15] Dufresne E R, Grier D G. Optical tweezer arrays and optical substrates created with diffractive optics[J]. Review of Scientific Instruments, 69, 1974-1977(1998).
[16] Dufresne E R, Spalding G C, Dearing M T et al. Computer-generated holographic optical tweezer arrays[J]. Review of Scientific Instruments, 72, 1810-1816(2001).
[17] Mikhael J, Roth J, Helden L et al. Archimedean-like tiling on decagonal quasicrystalline surfaces[J]. Nature, 454, 501-504(2008).
[20] Allen L, Beijersbergen M W. Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 45, 8185-8189(1992).
[21] Gahagan K T, Swartzlander G A. Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap[J]. Journal of the Optical Society of America B, 16, 533-537(1999).
[22] Volke-Sepulveda K, Garcés-Chávez V, Chávez-Cerda S et al. Orbital angular momentum of a high-order Bessel light beam[J]. Journal of Optics B: Quantum and Semiclassical Optics, 4, S82-S89(2002).
[24] Liang Y S, Lei M, Yan S H et al. Rotating of low-refractive-index microparticles with a quasi-perfect optical vortex[J]. Applied Optics, 57, 79-84(2018).
[25] Liang Y S, Yan S H, He M R et al. Generation of a double-ring perfect optical vortex by the Fourier transform of azimuthally polarized Bessel beams[J]. Optics Letters, 44, 1504-1507(2019).
[26] Kotar J, Leoni M, Bassetti B et al. Hydrodynamic synchronization of colloidal oscillators[J]. Proceedings of the National Academy of Sciences of the Unites states of America, 107, 7669-7673(2010).
[27] Xiao K, Grier D G. Multidimensional optical fractionation of colloidal particles with holographic verification[J]. Physical Review Letters, 104, 028302(2010).
[28] Hoogenboom J P. Vossen D L J, Faivre-Moskalenko C, et al. Patterning surfaces with colloidal particles using optical tweezers[J]. Applied Physics Letters, 80, 4828-4830(2002).
[29] Kulin S, Kishore R, Helmerson K et al. Optical manipulation and fusion of liposomes as microreactors[J]. Langmuir, 19, 8206-8210(2003).
[30] Liang Y, Cai Y, Wang Z et al. Aberration correction in holographic optical tweezers using a high-order optical vortex[J]. Applied Optics, 57, 3618-3623(2018).
[31] Harriman J L, Linnenberger A, Serati S A. Improving spatial light modulator performance through phase compensation[J]. Proceedings of SPIE, 5553, 58-67(2004).
[32] Wulff K D, Cole D G, Clark R L et al. Aberration correction in holographic optical tweezers[J]. Optics Express, 14, 4170-4175(2006).
[33] Dienerowitz M, Gibson G, Bowman R et al. Holographic aberration correction: optimising the stiffness of an optical trap deep in the sample[J]. Optics Express, 19, 24589-24595(2011).
[34] Farré A, Shayegan M, López-Quesada C et al. Positional stability of holographic optical traps[J]. Optics Express, 19, 21370-21384(2011).
[35] Ashkin A. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime[J]. Biophysical Journal, 61, 569-582(1992).
[36] Gross S P. Application of optical traps in vivo[M]. ∥Methods in enzymology. [S.l.]: Elsevier, 162-174(2003).
[37] Svoboda K, Block S M. Biological applications of optical forces[J]. Annual Review of Biophysics and Biomolecular Structure, 23, 247-285(1994).
[38] Vermeulen K C. Wuite G J L, Stienen G J M, et al. Optical trap stiffness in the presence and absence of spherical aberrations[J]. Applied Optics, 45, 1812-1819(2006).
[39] Pesce G, Volpe G, Maragó O M et al. Step-by-step guide to the realization of advanced optical tweezers[J]. Journal of the Optical Society of America B, 32, B84-B89(2015).
[40] Goodman J W. Introduction to Fourier optics[M]. [S.l.]: Roberts and Company Publishers(2005).
[41] Curtis J E, Koss B A, Grier D G. Dynamic holographic optical tweezers[J]. Optics Communications, 207, 169-175(2002).
[42] Liesener J, Reicherter M, Haist T et al. Multi-functional optical tweezers using computer-generated holograms[J]. Optics Communications, 185, 77-82(2000).
[43] Yu X H, Yao B L, Lei M et al. Polarization-sensitive diffractive optical elements fabricated in BR films with femtosecond laser[J]. Applied Physics B, 115, 365-369(2014).
[46] Mair A, Vaziri A, Weihs G et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 412, 313-316(2001).
[47] Auyeung R C Y, Kim H, Charipar N A et al. Laser forward transfer based on a spatial light modulator[J]. Applied Physics A, 102, 21-26(2010).
[48] Montes-Usategui M, Pleguezuelos E, Andilla J et al. Fast generation of holographic optical tweezers by random mask encoding of Fourier components[J]. Optics Express, 14, 2101-2107(2006).
[49] Polin M, Ladavac K, Lee S-H et al. Optimized holographic optical traps[J]. Optics Express, 13, 5831-5845(2005).
[50] Gerchberg R W, Saxton W O. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 35, 237-246(1972).
[51] di Leonardo R, Ianni F, Ruocco G. Computer generation of optimal holograms for optical trap arrays[J]. Optics Express, 15, 1913-1922(2007).
[52] Kirkham G R, Britchford E, Upton T et al. Precision assembly of complex cellular microenvironments using holographic optical tweezers[J]. Scientific Reports, 5, 8577(2015).
[53] Mejean C O, Schaefer A W, Millman E A et al. Multiplexed force measurements on live cells with holographic optical tweezers[J]. Optics Express, 17, 6209-6217(2009).
[54] Ehrlicher A, Betz T, Stuhrmann B et al. Guiding neuronal growth with light[J]. Preoceedings of the National Academy of Sciences, 99, 16024-16028(2002).
[55] Buck K B, Schaefer A W, Schoonderwoert V T et al. Local Arp2/3-dependent actin assembly modulates applied traction force during apCAM adhesion site maturation[J]. Molecular Biology of the Cell, 28, 98-110(2017).
[57] Maruo S, Inoue H. Optically driven micropump produced by three-dimensional two-photon microfabrication[J]. Applied Physics Letters, 89, 144101(2006).
[58] Metzger N K, Mazilu M, Kelemen L et al. Observation and simulation of an optically driven micromotor[J]. Journal of Optics, 13, 044018(2011).
[59] Mushfique H, Cooper J M et al. Multipoint holographic optical velocimetry in microfluidic systems[J]. Physical Review Letters, 96, 134502(2006).
[60] Ladavac K, Grier D G. Microoptomechanical pumps assembled and driven by holographic optical vortex arrays[J]. Optics Express, 12, 1144-1149(2004).
[61] Kress H, Park J-G, Mejean C O et al. Cell stimulation with optically manipulated microsources[J]. Nature Methods, 6, 905(2009).
[62] Gauvin F, Spinella P C, Lacroix J et al. Association between length of storage of transfused red blood cells and multiple organ dysfunction syndrome in pediatric intensive care patients[J]. Transfusion, 50, 1902-1913(2010).
[63] Tomaiuolo G. Biomechanical properties of red blood cells in health and disease towards microfluidics[J]. Biomicrofluidics, 8, 051501(2014).
[64] Miccio L, Memmolo P, Merola F et al. Red blood cell as an adaptive optofluidic microlens[J]. Nature Communications, 6, 6502(2015).
[65] Merola F, Barroso Á, Miccio L et al. Biolens behavior of RBCs under optically-induced mechanical stress[J]. Cytometry Part A, 91, 527-533(2017).
[67] Candelli A, Block J, Brouwer I et al. Why only stretch when you can also see? Correlative optical Tweezers-Fluorescence Microscopy (CTFM) as a versatile tool for cell biology[J]. Molecular Biology of the Cell, 25, 8120(2014).
[69] Fazal F M, Block S M. Optical tweezers study life under tension[J]. Nature Photonics, 5, 318-321(2011).
[71] Farré A, van der Horst A, Blab G A et al. Stretching single DNA molecules to demonstrate high-force capabilities of holographic optical tweezers[J]. Journal of Biophotonics, 3, 224-233(2010).
[72] Suei S, Raudsepp A, Kent L M et al. DNA visualization in single molecule studies carried out with optical tweezers: covalent versus non-covalent attachment of fluorophores[J]. Biochemical and Biophysical Research Communications, 466, 226-231(2015).
[73] Finer J T, Simmons R M, Spudich J A. Single myosin molecule mechanics: piconewton forces and nanometre steps[J]. Nature, 368, 113-119(1994).
[74] Oroszi L, Galajda P, Kirei H et al. Direct measurement of torque in an optical trap and its application to double-strand DNA[J]. Physical Review Letters, 97, 058301(2006).
[75] Forth S, Sheinin M Y, Inman J et al. Torque measurement at the single-molecule level[J]. Annual Review of Biophysics, 42, 583-604(2013).
[76] Sinjab F, Awuah D, Gibson G et al. Holographic optical trapping Raman micro-spectroscopy for non-invasive measurement and manipulation of live cells[J]. Optics Express, 26, 25211-25225(2018).
[77] Spesyvtsev R, Rendall H A, Dholakia K. Wide-field three-dimensional optical imaging using temporal focusing for holographically trapped microparticles[J]. Optics Letters, 40, 4847-4850(2015).
[78] Lee S H. Optimal integration of wide field illumination and holographic optical tweezers for multimodal microscopy with ultimate flexibility and versatility[J]. Optics Express, 26, 8049-8058(2018).
[79] Diekmann R, Wolfson D L, Spahn C et al. Nanoscopy of bacterial cells immobilized by holographic optical tweezers[J]. Nature Communications, 7, 13711(2016).
[80] Xie M Y, Mills J K, Wang Y et al. Automated translational and rotational control of biological cells with a robot-aided optical tweezers manipulation system[J]. IEEE Transactions on Automation Science and Engineering, 13, 543-551(2016).
[81] Yang X L, Niu X H, Liu Z et al. Accurate extraction of the self-rotational speed for cells in an electrokinetics force field by an image matching algorithm[J]. Micromachines, 8, 282(2017).
[82] Xie M Y, Shakoor A, Shen Y J et al. Out-of-plane rotation control of biological cells with a robot-tweezers manipulation system for orientation-based cell surgery[J]. IEEE Transactions on Biomedical Engineering, 66, 199-207(2019).
[83] Lin Y C, Chen H C, Tu H Y et al. Optically driven full-angle sample rotation for tomographic imaging in digital holographic microscopy[J]. Optics Letters, 42, 1321-1324(2017).
[84] Kelbauskas L, Shetty R, Cao B et al. Optical computed tomography for spatially isotropic four-dimensional imaging of live single cells[J]. Science Advances, 3, e1602580(2017).
[85] Habaza M, Gilboa B, Roichman Y et al. Tomographic phase microscopy with 180° rotation of live cells in suspension by holographic optical tweezers[J]. Optics Letters, 40, 1881-1884(2015).
[86] Cao B, Kelbauskas L, Chan S et al. Rotation of single live mammalian cells using dynamic holographic optical tweezers[J]. Optics and Lasers in Engineering, 92, 70-75(2017).
[87] Sahl S J, Hell S W, Jakobs S. Fluorescence nanoscopy in cell biology[J]. Nature Reviews Molecular Cell Biology, 18, 685-701(2017).
[88] Willaert R, Kasas S, Devreese B et al. Yeast nanobiotechnology[J]. Fermentation, 2, 18(2016).
[89] Sung Y, Choi W, Fang-Yen C et al. Optical diffraction tomography for high resolution live cell imaging[J]. Optics Express, 17, 266-277(2009).
[90] Haeberlé O, Belkebir K, Giovaninni H et al. Tomographic diffractive microscopy: basics, techniques and perspectives[J]. Journal of Modern Optics, 57, 686-699(2010).
[92] Lauer V. New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope[J]. Journal of Microscopy, 205, 165-176(2002).
[93] Mirjam S, Gheorghe C, Salvatore G et al. Three‐dimensional correlative single‐cell imaging utilizing fluorescence and refractive index tomography[J]. Jounal of Biophoton, 11, e201700145(2018).
[94] Ahmed D, Ozcelik A, Bojanala N et al. Rotational manipulation of single cells and organisms using acoustic waves[J]. Nature Communications, 7, 11085(2016).
[95] Memmolo P, Miccio L, Merola F et al. 3D morphometry of red blood cells by digital holography[J]. Cytometry Part A, 85, 1030-1036(2014).
[97] Tarn M D. Lopez-Martinez M J, Pamme N. On-chip processing of particles and cells via multilaminar flow streams[J]. Analytical and Bioanalytical Chemistry, 406, 139-161(2014).
[99] Buican T N, Smyth M J, Crissman H A et al. Automated single-cell manipulation and sorting by light trapping[J]. Applied Optics, 26, 5311-5316(1987).
[100] Hart S J, Terray A, Leski T A et al. Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, bacillus thuringiensis[J]. Analytical Chemistry, 78, 3221-3225(2006).
[101] Fan X D, White I M. Optofluidic microsystems for chemical and biological analysis[J]. Nature Photonics, 5, 591-597(2011).
[102] Trojek J, Chvátal L, Zemánek P. Optical alignment and confinement of an ellipsoidal nanorod in optical tweezers: a theoretical study[J]. Journal of the Optical Society of America A, 29, 1224-1236(2012).
[103] Carberry D M, Simpson S H, Grieve J A et al. Calibration of optically trapped nanotools[J]. Nanotechnology, 21, 175501(2010).
[104] Olof S N, Grieve J A, Phillips D B et al. Measuring nanoscale forces with living probes[J]. Nano Letters, 12, 6018-6023(2012).
[105] Smith D P E, Hörber J K H, Binnig G et al. Structure, registry and imaging mechanism of alkylcyanobiphenyl molecules by tunnelling microscopy[J]. Nature, 344, 641-644(1990).
[106] Chiou P Y, Ohta A T, Wu M C. Massively parallel manipulation of single cells and microparticles using optical images[J]. Nature, 436, 370-372(2005).
[107] Jiang G Y, Giannone G, Critchley D R et al. Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin[J]. Nature, 424, 334-337(2003).
[108] Tarbashevich K, Reichman-Fried M, Grimaldi C et al. Chemokine-dependent pH elevation at the cell front sustains polarity in directionally migrating zebrafish germ cells[J]. Current Biology, 25, 1096-1103(2015).
[109] Hörner F, Meissner R, Polali S et al. Holographic optical tweezers-based in vivo manipulations in zebrafish embryos[J]. Journal of Biophotonics, 10, 1492-1501(2017).
[110] Persson M, Engström D, Frank A et al. Minimizing intensity fluctuations in dynamic holographic optical tweezers by restricted phase change[J]. Optics Express, 18, 11250-11263(2010).
[111] Shaw L A, Chizari S, Hopkins J B. Improving the throughput of automated holographic optical tweezers[J]. Applied Optics, 57, 6396-6402(2018).
[113] Huhle A, Klaue D, Brutzer H et al. Camera-based three-dimensional real-time particle tracking at kHz rates and Ångström accuracy[J]. Nature Communications, 6, 5885(2015).
[115] van der Horst A, Forde N R. Calibration of dynamic holographic optical tweezers for force measurements on biomaterials[J]. Optics Express, 16, 20987-21003(2008).
[116] van der Horst A, Forde N R. Power spectral analysis for optical trap stiffness calibration from high-speed camera position detection with limited bandwidth[J]. Optics Express, 18, 7670-7677(2010).
[117] McLane L T, Keith M, Scrimgeour J et al. Force measurements with a translating holographic optical trap[J]. Proceedings of SPIE, 7762J, 77621(2010).
[118] Slawomir D, Korzeniewska A, Lamperska W et al. Double wavelength multifunctional optical tweezers[J]. Proceedings of SPIE, 109760C, 10976(2018).
[119] Kim H, Kim M, Lee W et al. Gerchberg-Saxton algorithm for fast and efficient atom rearrangement in optical tweezer traps[J]. Optics Express, 27, 2184-2196(2019).
[120] Chen H, Guo Y F, Chen Z Z et al. Holographic optical tweezers obtained by using the three-dimensional Gerchberg-Saxton algorithm[J]. Journal of Optics, 15, 035401(2013).
[121] Roxworthy B J. Toussaint K C Jr. Optical trapping with π-phase cylindrical vector beams[J]. New Journal of Physics, 12, 073012(2010).
[122] Huang L, Guo H L, Li J F et al. Optical trapping of gold nanoparticles by cylindrical vector beam[J]. Optics Letters, 37, 1694-1696(2012).
[123] Preece D, Keen S, Botvinick E et al. Independent polarisation control of multiple optical traps[J]. Optics Express, 16, 15897-15902(2008).
[124] Bhebhe N. Williams P A C, Rosales-Guzmán C, et al. A vector holographic optical trap[J]. Scientific Reports, 8, 17387(2018).
Get Citation
Copy Citation Text
Liang Yansheng, Yao Baoli, Lei Ming. Applications of Holographic Optical Tweezers in Biological Research[J]. Chinese Journal of Lasers, 2020, 47(2): 207020
Category: biomedical photonics and laser medicine
Received: Nov. 11, 2019
Accepted: --
Published Online: Feb. 21, 2020
The Author Email: