Photonics Research, Volume. 10, Issue 8, 1971(2022)
Heterogeneously integrated quantum-dot emitters efficiently driven by a quasi-BIC-supporting dielectric nanoresonator Editors' Pick
[1] L. Zimmermann, G. B. Preve, K. Voigt, G. Winzer, J. Kreissl, L. Moerl, C. Stamatiadis, L. Stampoulidis, H. Avramopoulos. High-precision flip-chip technology for all optical wavelength conversion using SOI photonic circuit. 8th IEEE International Conference on Group IV Photonics, 237-239(2011).
[2] G. H. Duan, C. Jany, A. L. Liepvre, A. Accard, M. Lamponi, D. Make, P. Kaspar, G. Levaufre, N. Girard, F. Lelarge. Hybrid III-V on silicon lasers for photonic integrated circuits on silicon. IEEE J. Sel. Top. Quantum Electron., 20, 158-170(2014).
[3] J. C. Norman, D. Jung, Y. Wan, E. John. Bowers perspective: the future of quantum dot photonic integrated circuits. APL Photon., 3, 030901(2018).
[4] T. Zhou, M. Tang, G. Xiang, X. Fang, X. Liu, B. Xiang, S. Hark, M. Martin, M.-L. Touraton, T. Baron, Y. Lu, S. Chen, H. Liu, Z. Zhang. Ultra-low threshold InAs/GaAs quantum dot microdisk lasers on planar on-axis Si (001) substrates. Optica, 6, 430-435(2019).
[5] K. Nishi, K. Takemasa, M. Sugawara, Y. Arakawa. Development of quantum dot lasers for data-com and silicon photonics applications. IEEE J. Sel. Top. Quantum Electron., 23, 1901007(2017).
[6] M. Ren-Min, R. F. Oulton. Applications of nanolasers. Nat. Nanotechnol., 14, 12-22(2019).
[7] I. Staude, T. Pertsch, Y. S. Kivshar. All-dielectric resonant meta-optics lightens up. ACS Photon., 6, 802-814(2019).
[8] A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, B. Luk’yanchuk. Optically resonant dielectric nanostructures. Science, 354, aag2472(2016).
[9] V. Rutckaia, F. Heyroth, A. Novikov, M. Shaleev, M. Petrov, J. Schilling. Quantum dot emission driven by Mie resonances in silicon nanostructures. Nano Lett., 17, 6886-6892(2017).
[10] E. Tiguntseva, K. Koshelev, A. Furasova, P. Tonkaev, V. Mikhailovskii, E. V. Ushakova, D. G. Baranov, T. Shegai, A. A. Zakhidov, Y. Kivshar, S. V. Makarov. Room-temperature lasing from Mie-resonant non-plasmonic nanoparticles. ACS Nano, 14, 8149-8156(2020).
[11] T. X. Hoang, S. T. Ha, Z. Pan, W. K. Phua, R. Paniagua-Domínguez, C. E. Png, H.-S. Chu, A. I. Kuznetsov. Collective Mie resonances for directional on-chip nanolasers. Nano Lett., 20, 5655-5661(2020).
[12] V. Rutckaia, F. Heyroth, G. Schmidt, A. Novikov, M. Shaleev, R. S. Savelev, J. Schilling, M. Petrov. Coupling of germanium quantum dots with collective sub-radiant modes of silicon nanopillar arrays. ACS Photon., 8, 209-217(2021).
[13] H. Sugimoto, M. Fujii. Colloidal Mie resonant silicon nanoparticles. Nanotechnology, 32, 452001(2021).
[14] C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, M. Soljačić. Bound states in the continuum. Nat. Rev. Mater., 1, 16048(2016).
[15] Z. F. Sadrieva, I. S. Sinev, K. L. Koshelev, A. Samusev, I. V. Iorsh, O. Takayama, R. Malureanu, A. A. Bogdanov, A. V. Lavrinenko. Transition from optical bound states in the continuum to leaky resonances: role of substrate and roughness. ACS Photon., 4, 723-727(2017).
[16] A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, K. Boubacar. Lasing action from photonic bound states in continuum. Nature, 541, 196-199(2017).
[17] K. Koshelev, A. Bogdanov, Y. Kivshar. Meta-optics and bound states in the continuum. Sci. Bull., 64, 836-842(2019).
[18] J.-H. Yang, Z.-T. Huang, D. N. Maksimov, P. S. Pankin, I. V. Timofeev, K.-B. Hong, H. Li, J.-W. Chen, C.-Y. Hsu, Y.-Y. Liu, T.-C. Lu, T.-R. Lin, C.-S. Yang, K.-P. Chen. Low-threshold bound state in the continuum lasers in hybrid lattice resonance metasurfaces. Laser Photon. Rev., 15, 2100118(2021).
[19] S. Cao, Y. Jin, H. Dong, T. Guo, J. He, S. He. Enhancing single photon emission through quasi-bound states in the continuum of monolithic hexagonal boron nitride metasurface. J. Phys. Mater., 4, 035001(2021).
[20] M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, Y. S. Kivshar. High-
[21] A. A. Bogdanov, K. L. Koshelev, P. V. Kapitanova, M. V. Rybin, S. A. Gladyshev, Z. F. Sadrieva, K. B. Samusev, Y. S. Kivshar, F. Mikhail. Bound states in the continuum and Fano resonances in the strong mode coupling regime. Adv. Photon., 1, 016001(2019).
[22] S. T. Ha, Y. H. Fu, N. K. Emani, Z. Pan, R. M. Bakker, R. Paniagua-Dominguez, A. I. Kuznetsov. Directional lasing in resonant semiconductor nanoantenna arrays. Nat. Nanotechnol., 13, 1042-1047(2018).
[23] C. Huang, C. Zhang, S. Xiao, Y. Wang, Y. Fan, Y. Liu, N. Zhang, G. Qu, H. Ji, J. Han, L. Ge, Y. Kivshar, Q. Song. Ultrafast control of vortex microlasers. Science, 367, 1018-1021(2020).
[24] V. Mylnikov, S. T. Ha, Z. Pan, V. Valuckas, R. Paniagua-Domínguez, H. V. Demir, A. I. Kuznetsov. Lasing action in single subwavelength particles supporting supercavity modes. ACS Nano, 14, 7338-7346(2020).
[25] M. Wu, L. Ding, R. P. Sabatini, L. K. Sagar, G. Bappi, R. Paniagua-Domínguez, E. H. Sargent, A. I. Kuznetsov. Bound state in the continuum in nanoantenna-coupled slab waveguide enables low-threshold quantum-dot lasing. Nano Lett., 21, 9754-9760(2021).
[26] W. Bi, X. Zhang, M. Yan, L. Zhao, T. Ning, Y. Huo. Low-threshold and controllable nanolaser based on quasi-BIC supported by an all-dielectric eccentric nanoring structure. Opt. Express, 29, 12634-12643(2021).
[27] R. Heilmann, G. Salerno, J. Cuerda, T. K. Hakala, P. Törmä. Quasi-BIC mode lasing in a quadrumer plasmonic lattice. ACS Photon., 9, 224-232(2022).
[28] H. K. Gandhi, D. Rocco, L. Carletti, C. De Angelis. Gain-loss engineering of bound states in the continuum for enhanced nonlinear response in dielectric nanocavities. Opt. Express, 28, 3009-3016(2020).
[29] S. D. Krasikov, A. A. Bogdanov, I. V. Iorsh. Nonlinear bound states in the continuum of a one-dimensional photonic crystal slab. Phys. Rev. B, 97, 224309(2018).
[30] K. Koshelev, S. Kruk, E. Melik-Gaykazyan, J.-H. Choi, A. Bogdanov, H.-G. Park, Y. Kivshar. Subwavelength dielectric resonators for nonlinear nanophotonics. Science, 367, 288-292(2020).
[31] H. Kroemer. Polar-on-nonpolar epitaxy. J. Cryst. Growth, 81, 193-204(1987).
[32] M. Liao, S. Chen, J.-S. Park, A. Seeds, H. Liu. III-V quantum-dot lasers monolithically grown on silicon. Semicond. Sci. Technol., 33, 123002(2018).
[33] Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, K. M. Lau. Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon. Opt. Lett., 41, 1664-1667(2016).
[34] Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, J. E. Bowers. 1.3 μm submilliamp threshold quantum dot micro-lasers on Si. Optica, 4, 940-944(2017).
[35] J. Kwoen, B. Jang, J. Lee, T. Kageyama, K. Watanabe, Y. Arakawa. All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001). Opt. Express, 26, 11568-11576(2018).
[36] B. Zhang, W.-Q. Wei, J.-H. Wang, H.-L. Wang, Z. Zhao, L. Liu, H. Cong, Q. Feng, H. Liu, T. Wang, J.-J. Zhang. O-band InAs/GaAs quantum-dot microcavity laser on Si (001) hollow substrate by in-situ hybrid epitaxy. AIP Adv., 9, 015331(2019).
[37] J. E. Bowers, J. T. Bovington, A. Y. Liu, A. C. Gossard. A path to 300 mm hybrid silicon photonic integrated circuits. Optical Fiber Communication Conference, Th1C.1(2014).
[38] E. Yablonovitch, T. Gmitter, J. P. Harbison, R. Bhat. Extreme selectivity in the lift-off of epitaxial GaAs films. Appl. Phys. Lett., 51, 222-2224(1987).
[39] J. van de Groep, A. Polman. Designing dielectric resonators on substrates: combining magnetic and electric resonances. Opt. Express, 21, 26285-26302(2013).
[40] R. Colom, F. Binkowski, F. Betz, Y. Kivshar, S. Burger. Enhanced Purcell factor for nanoantennas supporting interfering resonances. Phys. Rev. Res., 4, 023189(2022).
Get Citation
Copy Citation Text
Li Liu, Ruxue Wang, Xuyi Zhao, Wenfu Yu, Yi Jin, Qian Gong, Aimin Wu, "Heterogeneously integrated quantum-dot emitters efficiently driven by a quasi-BIC-supporting dielectric nanoresonator," Photonics Res. 10, 1971 (2022)
Category: Silicon Photonics
Received: Apr. 29, 2022
Accepted: Jun. 27, 2022
Published Online: Jul. 27, 2022
The Author Email: Yi Jin (jinyi_2008@zju.edu.cn), Qian Gong (qgong@mail.sim.ac.cn), Aimin Wu (wuaimin@mail.sim.ac.cn)