Chinese Journal of Liquid Crystals and Displays, Volume. 38, Issue 12, 1717(2023)

Object detection in foggy image based on Double-Head

Ren-si LI, Yun-yu SHI*, Xiang LIU, Xian TANG, and Jing-wen ZHAO
Author Affiliations
  • Department of Electric and Electronic Engineering,Shanghai University of Engineering Science,Shanghai 201620,China
  • show less
    Figures & Tables(16)
    Overview of the proposed network
    Structure of the fusion feature enhancement
    Structure of the Enhance module
    Comparison of feature heat activation map
    Structure of the decoupled prediction head
    Structure of the convolution module
    Examples of RTTS image detection results
    Detection results of different algorithms in different scenarios
    Detection results in the actual foggy scene
    • Table 1. Performance comparison of different algorithms in the RTTS dataset

      View table
      View in Article

      Table 1. Performance comparison of different algorithms in the RTTS dataset

      方法骨干网络汽车公交车自行车摩托车行人mAP
      Yolov3DarkNet5361.5823.2023.0243.8430.3236.39
      ATSS23ResNet10160.9535.6910.3746.3330.3237.68
      Dynamic R-CNN24ResNet10161.9341.3232.2037.3846.0843.78
      Double-HeadResNet10163.0051.5324.2941.7043.2244.74
      Cascade R-CNNResNet10163.3343.3726.4338.0343.1642.86
      FPVDNetResNet10165.4744.1026.5044.3146.6145.40
      KODNetResNet10164.8147.2228.6547.3545.2546.66
      本文方法ResNet10166.4150.7833.6250.1246.9249.37
    • Table 2. Performance comparison of different algorithms in the S-KITTI dataset

      View table
      View in Article

      Table 2. Performance comparison of different algorithms in the S-KITTI dataset

      方法骨干网络APAP75AP50APSAPMAPL
      FSAF26ResNet10162.869.689.963.763.066.8
      ATSSResNet10164.874.489.861.564.670.2
      PANetResNet10164.472.990.164.664.269.0
      Libra R-CNNResNet10164.574.389.763.863.769.5
      Dynamic R-CNNResNet10165.975.490.262.966.570.8
      Double HeadResNet10165.474.590.765.464.669.8
      本文方法ResNet10166.777.190.965.666.271.4
    • Table 3. Performance comparison of different algorithms in the S-COCOval dataset

      View table
      View in Article

      Table 3. Performance comparison of different algorithms in the S-COCOval dataset

      方法骨干网络APAP75AP50APSAPMAPL
      FSAFResNet10152.558.477.637.547.164.3
      ATSSResNet10154.461.278.038.748.866.4
      PANetResNet10153.660.778.235.647.864.8
      Libra R-CNNResNet10154.161.477.839.248.165.3
      Dynamic R-CNNResNet10156.863.678.739.450.469.0
      Double HeadResNet10156.263.279.838.750.567.2
      本文方法ResNet10157.765.179.641.151.169.3
    • Table 4. Comparison of the parameters and AP values after adding different number of modules b

      View table
      View in Article

      Table 4. Comparison of the parameters and AP values after adding different number of modules b

      模块a模块b参数/MAP
      01.0637.1
      11.8737.9(+0.8)
      22.6838.6(+1.5)
      33.4939.1(+2.0)
      44.3039.6(+2.5)
      55.1139.6(+2.5)
      65.9239.7(+2.6)
    • Table 5. Ablation study of proposed component

      View table
      View in Article

      Table 5. Ablation study of proposed component

      方法注意力模块mAP参数量/M
      /51.5-
      SE51.6+0.41
      Double-HeadCA52.2+0.52
      CBAM52.7+0.51
      本文53.6+0.45
    • Table 6. Ablation study of proposed component

      View table
      View in Article

      Table 6. Ablation study of proposed component

      主干网络注意力先验权重EDHmAPΔ
      ResNet5052.9-
      ResNet5053.7+0.8
      ResNet5055.3+2.4
      ResNet5054.3+1.4
      ResNet5056.5+3.6
    • Table 7. Experimental results of the proposed method under different foggy conditions

      View table
      View in Article

      Table 7. Experimental results of the proposed method under different foggy conditions

      雾浓度βAPAP75AP50
      轻度0.1~0.264.274.188.2
      中度0.2~0.362.772.587.6
      重度0.3~0.559.469.685.9
    Tools

    Get Citation

    Copy Citation Text

    Ren-si LI, Yun-yu SHI, Xiang LIU, Xian TANG, Jing-wen ZHAO. Object detection in foggy image based on Double-Head[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(12): 1717

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Mar. 7, 2023

    Accepted: --

    Published Online: Mar. 7, 2024

    The Author Email: Yun-yu SHI (yunyushi@sues.edu.cn)

    DOI:10.37188/CJLCD.2023-0089

    Topics