Chinese Journal of Liquid Crystals and Displays, Volume. 39, Issue 6, 790(2024)

Weak feature defect detection method for LCD screens based on YOLOv5

Feng LIN, Yan SHI*, Shunlong CHEN, Yinghua LIAO, Lian ZHAO, Li ZHAO, and Zemin ZHOU
Author Affiliations
  • School of Mechanical Engineering,Sichuan University of Science & Engineering,Yibin 644000,China
  • show less
    Figures & Tables(17)
    YOLO-Mura network model
    Feedforward calculation process of Involution operator
    CARAFE upsampling structure
    (a)Double layer routing attention(BRA)module;(b)Overall architecture of BiFormer.
    Feature fusion structure
    Sample pictures of LCD Mura defect
    Visualization of feature map
    Visualization of upsampled feature maps
    Heat map of the improved algorithm
    • Table 1. LCD Mura defect data set

      View table
      View in Article

      Table 1. LCD Mura defect data set

      液晶屏Mura缺陷类型图片数量
      点状Mura855
      线状Mura867
      区域状Mura952
    • Table 2. Comparison experiments of introducing Involution layers in different locations of the backbone network

      View table
      View in Article

      Table 2. Comparison experiments of introducing Involution layers in different locations of the backbone network

      实验第二层第四层第六层Precision/%Recall/%FLOPs/GmAP@0.5/%
      196.488.915.894.5
      293.591.55.392.1
      392.589.06.890.5
      491.890.316.089.6
      587.186.33.090.5
      687.085.53.089.9
    • Table 3. Improved upsampling method

      View table
      View in Article

      Table 3. Improved upsampling method

      ModelPrecision/%Recall/%mAP@0.5/%
      YOLO-I93.591.592.1
      YOLO-IC94.693.093.8
    • Table 4. Performance of model with different attention modules

      View table
      View in Article

      Table 4. Performance of model with different attention modules

      注意力机制Precision/%Recall/%mAP@0.5/%
      YOLO-IC94.693.093.8
      ECA95.292.795.8
      CA93.494.594.2
      SA93.593.894.7
      BiFormer96.095.796.5
    • Table 5. Improved feature fusion

      View table
      View in Article

      Table 5. Improved feature fusion

      特征融合方式Precision/%Recall/%mAP@0.5/%
      自顶向下92.783.392.1
      自底向上94.883.493.4
      PANet96.095.796.5
      ASFF98.495.997.0
      BiFPN98.696.097.2
    • Table 6. Ablation experimental results

      View table
      View in Article

      Table 6. Ablation experimental results

      序号InvolutionCARAFEBiFormerBiFPNFLOPs/GPrecision/%Recall/%mAP@0.5/%FPS
      A15.896.488.994.599.0
      B5.393.591.592.1131.6
      C16.594.092.794.8116.3
      D5.994.693.093.8122.4
      E6.094.293.192.6119.0
      F19.194.59093.2112.5
      G6.196.095.796.5109.8
      H5.894.893.594.3113.5
      J5.696.295.494.6110.3
      I6.398.696.597.2103.1
    • Table 7. Comparison of grayscale values of missed defects

      View table
      View in Article

      Table 7. Comparison of grayscale values of missed defects

      模型漏检数量背景平均灰度值缺陷平均灰度值差值
      YOLOv5s45184.57179.754.82
      YOLO-Mura6184.74182.122.62
    • Table 8. Performance comparison of different algorithms

      View table
      View in Article

      Table 8. Performance comparison of different algorithms

      ModelFLOPs/GPrecision/%Recall/%mAP@0.5
      YOLOv3-Tiny12.984.988.290.1
      YOLOv4s-Mish20.691.693.595.4
      YOLOv5n4.293.690.193.2
      YOLOv5s15.896.488.994.5
      YOLOv7-Tiny13.087.186.390.5
      YOLOv8n8.092.892.294.8
      YOLOv8s28.493.492.995.3
      YOLO-Mura6.398.696.597.2
    Tools

    Get Citation

    Copy Citation Text

    Feng LIN, Yan SHI, Shunlong CHEN, Yinghua LIAO, Lian ZHAO, Li ZHAO, Zemin ZHOU. Weak feature defect detection method for LCD screens based on YOLOv5[J]. Chinese Journal of Liquid Crystals and Displays, 2024, 39(6): 790

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jun. 6, 2023

    Accepted: --

    Published Online: Jul. 30, 2024

    The Author Email: Yan SHI (sy71Email@163.com)

    DOI:10.37188/CJLCD.2023-0206

    Topics