Study On Optical Communications, Volume. 48, Issue 5, 12(2022)

The Research of Massive Multiple Input Multiple Output Detection Algorithms in Optical Fiber Communication System

Feng-ju FAN1, Jian-yong ZHANG2、*, Yi-mei SONG1, Wei-guo HU1, and Shu-chao MI2
Author Affiliations
  • 1Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044, China
  • 2Key Laboratory of All-Optical Network and Advanced Telecommunication Network of EMC, Beijing Jiaotong University, Beijing 100044, China
  • show less
    References(30)

    [1] Choutagunta K, Arik S O, Ho K et al. Characterizing Mode-dependent Loss and Gain in Multimode Components[J]. Journal of Lightwave Technology, 36, 3815-3823(2018).

    [2] Sakaguchi J, Klaus W, Jose Manuel Delgado M et al. Large Spatial Channel (36-core 3 mode) Heterogeneous Few-mode Multicore Fiber[J]. Journal of Lightwave Technology, 34, 93-103(2016).

    [3] Sakaguchi J, Klaus W, Awaji Y et al. 228-spatial-channel Bi-directional Data Communication System Enabled by 39-core 3-mode Fiber[J]. Journal of Lightwave Technology, 37, 1756-1763(2019).

    [4] Hayashi T, Nagashima T, Yonezawa K et al. Six-mode 19-core Fiber with 114 Spatial Modes for Weakly-coupled Mode-division-multiplexed Transmission[J]. Journal of Lightwave Technology, 35, 748-754(2017).

    [5] Igarashi K, Tsuritani T, Morita I et al. 114 Space-Division-multiplexed WDM Transmission Using 6-mode 19-core Fibers[C], 643-644(2015).

    [6] Soma D, Wakayama Y, Beppu S et al. 10.16 peta-bit/s Dense SMD/WDM Transmission over Low-DMD 6-mode 19-core Fibre Across C+L Band[C], 1-3(2017).

    [7] Antonelli C, Mecozzi A, Shtaif M et al. Modeling and Performance Metrics of MIMO-SDM Systems with Different Amplification Schemes in the Presence of Mode-Dependent Loss[J]. Optics Express, 23, 2203-2219(2015).

    [8] Bai N, Li G. Adaptive Frequency-domain Equalization for Mode-division Multiplexed Transmission[J]. IEEE Photonics Technology Letters, 24, 1918-1921(2012).

    [9] Arik S O, Kahn J M, Ho K. MIMO Signal Processing for Mode-division Multiplexing: An Overview of Channel Models and Signal Processing Architectures[J]. IEEE Signal Processing Magazine, 31, 25-34(2014).

    [10] Lobato A, Ferreira F, Inan B et al. Maximum Likelihood Detection in Few-mode Fiber Transmission with Mode-dependent Loss[J]. IEEE Photonics Technology Letters, 25, 1095-1098(2013).

    [11] Lobato A, Rabe J, Ferreira F et al. Near-ML Detection for MDL-impaired Few-mode Fiber Transmission[J]. Optics Express, 23, 9589-9601(2015).

    [12] Cao Z G, Miao L, Wang S K et al. Soft-decision Aided Probabilistic Data Association based Detection for Mode Division Multiplexing Transmission with Mode-dependent Loss[J]. IEEE Access, 7, 172744-172751(2019).

    [13] Yang S, Hanzo L. Fifty Years of MIMO Detection: the Road to Large-scale MIMOs[J]. IEEE Communications Surveys Tutorials, 17, 1941-1988(2015).

    [14] Albreem M A, Juntti M, Shahabuddin S. Massive MIMO Detection Techniques: A Survey[J]. IEEE Communications Surveys Tutorials, 21, 3109-3132(2019).

    [15] Uddin M B, Sarkar M Z I, Faisal K N et al. Performance Analysis of Nakagami-m Fading Massive MIMO Channels with Linear Receivers[C], 510-513(2014).

    [16] Wu M, Yin B, Vosoughi A et al. Approximate Matrix Inversion for High-throughput Data Detection in The Large-scale MIMO Uplink[C], 2155-2158(2013).

    [17] Jin J, Xue Y, Ueng Y et al. A Split Preconditioned Conjugate Gradient Method for Massive MIMO Detection[C], 1-6(2017).

    [18] Dai L, Gao X, Su X et al. Low-Complexity Soft Output Signal Detection based on Gauss-seidel Method for Uplink Multiuser Large-scale MIMO Systems[J]. IEEE Transactions on Vehicular Technology, 64, 4839-4845(2015).

    [19] Thrampoulidis C, Abbasi E, Xu W et al. BER Analysis of the BOX Relaxation for BPSK Signal Recovery[C], 3776-3780(2016).

    [20] Thrampoulidis C, Xu W, Hassibi B. Symbol Error Rate Performance of BOX-relaxation Decoders in Massive MIMO[J]. IEEE Transactions on Signal Processing, 66, 3377-3392(2018).

    [21] Wu M, Dick C, Cavallaro J R et al. High-throughput Data Detection for Massive MU-MIMO OFDM Using Coordinate Descent[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 63, 2357-2367(2016).

    [22] Shahabuddin S, Juntti M, Studer C. ADMM-based Infinity Norm Detection for Large MU-MIMO: Algorithm and VLSI Architecture[C], 1-4(2017).

    [23] Chaudhary M, Meena N K, Kshetrimayum R S. Local Search based Near Optimal Low Complexity Detection for Large MIMO System[C], 1-5(2016).

    [24] Fukuda W, Abiko T, Nishimura T et al. Low-Complexity Detection based on Belief Propagation in a Massive MIMO System[C], 1-5(2013).

    [25] Tanchuk O, Rao B. Exploiting Sparsity during the Detection of High-order QAM Signals in Large Dimension MIMO Systems[C], 101-105(2014).

    [26] Ho K P, Kahn J M. Mode-Dependent Loss and Gain: Statistics and Effect on Mode-Division Multiplexing[J]. Optics Express, 19, 16612-16635(2011).

    [27] Ho K. Exact Model for Mode-Dependent Gains and Losses in Multimode Fiber[J]. Journal of Lightwave Technology, 30, 3603-3609(2012).

    [28] Arik S O, Kahn J M. Adaptive MIMO Signal Processing in Mode-division Multiplexing[C], 192-193(2014).

    [29] Antonelli C, Mecozzi A, Shtaif M et al. Stokes-Space Analysis of Modal Dispersion of SDM Fibers with Mode-Dependent Loss: Theory and Experiments[J]. Journal of Lightwave Technology, 38, 1668-1677(2020).

    [30] Puttnam B J, Rademacher G, Luís R S. Space-division Multiplexing for Optical Fiber Communications[J]. Optica, 8, 1186-1203(2021).

    Tools

    Get Citation

    Copy Citation Text

    Feng-ju FAN, Jian-yong ZHANG, Yi-mei SONG, Wei-guo HU, Shu-chao MI. The Research of Massive Multiple Input Multiple Output Detection Algorithms in Optical Fiber Communication System[J]. Study On Optical Communications, 2022, 48(5): 12

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jan. 26, 2022

    Accepted: --

    Published Online: Nov. 18, 2022

    The Author Email: Jian-yong ZHANG (jyzhang@bjtu.edu.cn)

    DOI:10.13756/j.gtxyj.2022.05.003

    Topics