Journal of Synthetic Crystals, Volume. 52, Issue 5, 732(2023)

Research Progress of Diamond Schottky Barrier Diodes

PENG Bo1,2, LI Qi1,2, ZHANG Shumiao1,2, FAN Shuwei1,2, WANG Ruozheng1,2, and WANG Hongxing1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(86)

    [1] [1] ISBERG J, HAMMERSBERG J, JOHANSSON E, et al. High carrier mobility in single-crystal plasma-deposited diamond[J]. Science, 2002, 297(5587): 1670-1672.

    [3] [3] BERNHARD D. Low-Pressure Synthetic Diamond[M]. Berlin: Springer, 1998: 331.

    [4] [4] SHENAI K, SCOTT R S, BALIGA B J. Optimum semiconductors for high-power electronics[J]. IEEE Transactions on Electron Devices, 1989, 36(9): 1811-1823.

    [5] [5] ALEKSOV A, KUBOVIC M, KAEB N, et al. Diamond field effect transistors: concepts and challenges[J]. Diamond and Related Materials, 2003, 12(3/4/5/6/7): 391-398.

    [6] [6] DENISENKO A, KOHN E. Diamond power devices. Concepts and limits[J]. Diamond and Related Materials, 2005, 14(3/4/5/6/7): 491-498.

    [7] [7] ARKHIPOVA E A, DEMIDOV E V, DROZDOV M N, et al. Ohmic contacts to CVD diamond with boron-doped delta layers[J]. Semiconductors, 2019, 53(10): 1348-1352.

    [8] [8] ACHARD J, ARAUJO D, ARNAULT J C, et al. Power electronics device applications of diamond semiconductors[M]. Cambridge: Woodhead Publishing, 2018

    [9] [9] TERAJI T, ISOYA J, WATANABE K, et al. Homoepitaxial diamond chemical vapor deposition for ultra-light doping[J]. Materials Science in Semiconductor Processing, 2017, 70: 197-202.

    [10] [10] BARJON J, CHIKOIDZE E, JOMARD F, et al. Homoepitaxial boron-doped diamond with very low compensation[J]. Physica Status Solidi (a), 2012, 209(9): 1750-1753.

    [11] [11] YAP C M, ANSARI K, XIAO S, et al. Properties of near-colourless lightly boron doped CVD diamond[J]. Diamond and Related Materials, 2018, 88: 118-122.

    [12] [12] ISSAOUI R, ACHARD J, WILLIAM L, et al. Thick and widened high quality heavily boron doped diamond single crystals synthetized with high oxygen flow under high microwave power regime[J]. Diamond and Related Materials, 2019, 94: 88-91.

    [15] [15] TERAJI T. High-quality and high-purity homoepitaxial diamond (100) film growth under high oxygen concentration condition[J]. Journal of Applied Physics, 2015, 118(11): 115304.

    [16] [16] WANG R Z, PENG B, BAI H, et al. Morphology, defects and electrical properties of boron-doped single crystal diamond under various oxygen concentration[J]. Materials Letters, 2022, 322: 132345.

    [17] [17] TANG L, YUE R F, WANG Y. N-type B-S co-doping and S doping in diamond from first principles[J]. Carbon, 2018, 130: 458-465.

    [18] [18] LIU D Y, HAO L C, CHEN Z A, et al. Sulfur regulation of boron doping and growth behavior for high-quality diamond in microwave plasma chemical vapor deposition[J]. Applied Physics Letters, 2020, 117(2): 022101.

    [19] [19] BOUSSADI A, TALLAIRE A, BRINZA O, et al. Thick heavily boron doped CVD diamond films homoepitaxially grown on (111)-oriented substrates[J]. Diamond and Related Materials, 2017, 79: 108-111.

    [20] [20] MORTET V, PERNOT J, JOMARD F, et al. Properties of boron-doped epitaxial diamond layers grown on (110) oriented single crystal substrates[J]. Diamond and Related Materials, 2015, 53: 29-34.

    [21] [21] TALLAIRE A, VALENTIN A, MILLE V, et al. Growth of thick and heavily boron-doped (113)-oriented CVD diamond films[J]. Diamond and Related Materials, 2016, 66: 61-66.

    [22] [22] TAYLOR A, BALUCHOV S, FEKETE L, et al. Growth and comparison of high-quality MW PECVD grown B doped diamond layers on{118}, {115} and {113}single crystal diamond substrates[J]. Diamond and Related Materials, 2022, 123: 108815.

    [26] [26] KONO S, TERAJI T, KODAMA H, et al. Direct determination of the barrier height of Ti-based ohmic contact on p-type diamond (001)[J]. Diamond and Related Materials, 2015, 60: 117-122.

    [27] [27] WANG Y Y, LIU X Q, ZHEN C M, et al. Ohmic contacts and interface properties of Au/Ti/p-diamond prepared by r.f. sputtering[J]. Surface and Interface Analysis, 2000, 29(7): 478-481.

    [28] [28] HOFF H A, WAYTENA G L, VOLD C L, et al. Ohmic contacts to semiconducting diamond using a Ti/Pt/Au trilayer metallization scheme[J]. Diamond and Related Materials, 1996, 5(12): 1450-1456.

    [29] [29] MANIFOLD S A, KLEMENCIC G, THOMAS E L H, et al. Contact resistance of various metallisation schemes to superconducting boron doped diamond between 1.9 and 300 K[J]. Carbon, 2021, 179: 13-19.

    [30] [30] ZHEN C M, WANG X Q, WU X C, et al. Au/p-diamond ohmic contacts deposited by RF sputtering[J]. Applied Surface Science, 2008, 255(5): 2916-2919.

    [31] [31] LI F N, ZHANG J W, WANG X L, et al. Barrier heights of Au on diamond with different terminations determined by X-ray photoelectron spectroscopy[J]. Coatings, 2017, 7(7): 88.

    [32] [32] WANG W, HU C, LI F N, et al. Palladium Ohmic contact on hydrogen-terminated single crystal diamond film[J]. Diamond and Related Materials, 2015, 59: 90-94.

    [33] [33] DAS K, VENKATESAN V, HUMPHREYS T P. Ohmic contacts on diamond by B ion implantation and TiC-Au and TaSi2-Au metallization[J]. Journal of Applied Physics, 1994, 76(4): 2208-2212.

    [34] [34] ZHAO D, LI F N, LIU Z C, et al. Effects of rapid thermal annealing on the contact of tungsten/p-diamond[J]. Applied Surface Science, 2018, 443: 361-366.

    [35] [35] ZHAO D, LIU Z C, ZHANG X F, et al. Analysis of diamond pseudo-vertical Schottky barrier diode through patterning tungsten growth method[J]. Applied Physics Letters, 2018, 112(9): 092102.

    [36] [36] KON S, SCHNEIDER H, ISOIRD K, et al. An assessment of contact metallization for high power and high temperature diamond Schottky devices[J]. Diamond and Related Materials, 2012, 27/28: 23-28.

    [37] [37] TERAJI T, KOIDE Y, ITO T. Schottky barrier height and thermal stability of p-diamond (100) Schottky interfaces[J]. Thin Solid Films, 2014, 557: 241-248.

    [38] [38] PIERO J C, ARAJO D, FIORI A, et al. Atomic composition of WC/and Zr/O-terminated diamond Schottky interfaces close to ideality[J]. Applied Surface Science, 2017, 395: 200-207.

    [39] [39] TERAJI T, GARINO Y, KOIDE Y, et al. Low-leakage p-type diamond Schottky diodes prepared using vacuum ultraviolet light/ozone treatment[J]. Journal of Applied Physics, 2009, 105(12): 126109.

    [40] [40] TRAOR A, MURET P, FIORI A, et al. Zr/oxidized diamond interface for high power Schottky diodes[J]. Applied Physics Letters, 2014, 104(5): 052105.

    [41] [41] POLYAKOV A, SMIRNOV N, TARELKIN S, et al. Electrical properties of diamond platinum vertical Schottky barrier diodes[J]. Materials Today: Proceedings, 2016, 3: S159-S164.

    [42] [42] UEDA K, KAWAMOTO K, SOUMIYA T, et al. High-temperature characteristics of Ag and Ni/diamond Schottky diodes[J]. Diamond and Related Materials, 2013, 38: 41-44.

    [43] [43] LI F N, LIU J W, ZHANG J W, et al. Measurement of barrier height of Pd on diamond (100) surface by X-ray photoelectron spectroscopy[J]. Applied Surface Science, 2016, 370: 496-500.

    [44] [44] IKEDA K, UMEZAWA H, RAMANUJAM K, et al. Thermally stable Schottky barrier diode by Ru/diamond[J]. Applied Physics Express, 2009, 2: 011202.

    [45] [45] HU C, LIU Z C, ZHANG J W, et al. Diamond Schottky barrier diode with fluorine- and oxygen-termination[J]. MRS Advances, 2016, 1(16): 1125-1130.

    [46] [46] ZHAO D, HU C, LIU Z C, et al. Diamond MIP structure Schottky diode with different drift layer thickness[J]. Diamond and Related Materials, 2017, 73: 15-18.

    [47] [47] GILDENBLAT G S, GROT S A, WRONSKI C R, et al. Electrical characteristics of Schottky diodes fabricated using plasma assisted chemical vapor deposited diamond films[J]. Applied Physics Letters, 1988, 53(7): 586-588.

    [48] [48] GILDENBLAT G S, GROT S A, WRONSKI C R, et al. Schottky diodes with thin film diamond base[C]//Technical Digest, International Electron Devices Meeting. December 11-14, 1988, San Francisco, CA, USA. IEEE, 2002: 626-629.

    [49] [49] GILDENBLAT G S, GROT S A, HATFIELD C W, et al. High-temperature Schottky diodes with thin-film diamond base[J]. IEEE Electron Device Letters, 1990, 11(9): 371-372.

    [50] [50] EBERT W, VESCAN A, BORST T H, et al. Epitaxial diamond Schottky barrier diode with on/off current ratios in excess of 107 at high temperatures[C]//Proceedings of 1994 IEEE International Electron Devices Meeting. December 11-14, 1994, San Francisco, CA, USA. IEEE, 2002: 419-422.

    [51] [51] PEARCE S R J, HENLEY S J, CLAEYSSENS F, et al. Production of nanocrystalline diamond by laser ablation at the solid/liquid interface[J]. Diamond and Related Materials, 2004, 13(4/5/6/7/8): 661-665.

    [52] [52] TWITCHEN D J, WHITEHEAD A J, COE S E, et al. High-voltage single-crystal diamond diodes[J]. IEEE Transactions on Electron Devices, 2004, 51(5): 826-828.

    [53] [53] IKEDA K, UMEZAWA H, SHIKATA S. Edge termination techniques for p-type diamond Schottky barrier diodes[J]. Diamond and Related Materials, 2008, 17(4/5): 809-812.

    [54] [54] VOLPE P N, MURET P, PERNOT J, et al. High breakdown voltage Schottky diodes synthesized on p-type CVD diamond layer[J]. Physica Status Solidi (a), 2010, 207(9): 2088-2092.

    [55] [55] REINKE P, BENKHELIFA F, KIRSTE L, et al. Influence of different surface morphologies on the performance of high-voltage, low-resistance diamond Schottky diodes[J]. IEEE Transactions on Electron Devices, 2020, 67(6): 2471-2477.

    [56] [56] SHIGEMATSU S, OISHI T, SEKI Y, et al. Schottky barrier diodes fabricated on high-purity type-IIa CVD diamond substrates using an all-ion-implantation process[J]. Japanese Journal of Applied Physics, 2021, 60(5): 050903.

    [57] [57] WANG J, ZHAO D, SHAO G Q, et al. Fabrication of dual-barrier planar structure diamond Schottky diodes by rapid thermal annealing[J]. IEEE Transactions on Electron Devices, 2021, 68(3): 1176-1180.

    [58] [58] WANG J, SHAO G Q, LI Q, et al. Vertical diamond trench MOS barrier Schottky diodes with high breakdown voltage[J]. IEEE Transactions on Electron Devices, 2022, 69(11): 6231-6235.

    [59] [59] SAHA N C, IRIE Y, SEKI Y, et al. 1651-V all-ion-implanted Schottky barrier diode on heteroepitaxial diamond with 3.6×10 h on/off ratio[J]. IEEE Electron Device Letters, 2023, 44(2): 293-296.

    [60] [60] TOKUYUKI T E R A J I, SATOSHI K O I Z U M I, YASUO K O I D E, et al. Electric field breakdown of lateral Schottky diodes of diamond[J]. Japanese Journal of Applied Physics, 2007, 46(8/11): L196-L198.

    [61] [61] KUMARESAN R, UMEZAWA H, SHIKATA S. Vertical structure Schottky barrier diode fabrication using insulating diamond substrate[J]. Diamond and Related Materials, 2010, 19(10): 1324-1329.

    [62] [62] KUMARESAN R, UMEZAWA H, SHIKATA S. Parasitic resistance analysis of pseudovertical structure diamond Schottky barrier diode[J]. Physica Status Solidi (a), 2010, 207(8): 1997-2001.

    [63] [63] BORMASHOV V S, TERENTIEV S A, BUGA S G, et al. Thin large area vertical Schottky barrier diamond diodes with low on-resistance made by ion-beam assisted lift-off technique[J]. Diamond and Related Materials, 2017, 75: 78-84.

    [65] [65] ROY S, BHATTACHARYYA A, RANGA P, et al. High-k oxide field-plated vertical (001) β-Ga2O3 Schottky barrier diode with baliga’s figure of merit over 1 GW/cm2[J]. IEEE Electron Device Letters, 2021, 42(8): 1140-1143.

    [66] [66] JIN F Y, CHEN P H, HUNG W C, et al. Analysis of breakdown-voltage increase on SiC junction barrier Schottky diode under negative bias stress[J]. IEEE Transactions on Electron Devices, 2023, 70(1): 191-195.

    [67] [67] SHANKAR B, GUPTA S K, TAUBE W R, et al. Dependence of field plate parameters on dielectric constant in a 4H-SiC Schottky diode[C]//2014 IEEE 2nd International Conference on Emerging Electronics (ICEE). December 3-6, 2014, Bengaluru, India. IEEE, 2015: 1-3.

    [68] [68] ZHANG Y L, LIU P F, ZHANG J, et al. 1.2-kV 4H-SiC JBS diodes engaging P-type retrograde implants[J]. IEEE Transactions on Electron Devices, 2022, 69(12): 6963-6970.

    [69] [69] UMEZAWA H, NAGASE M, KATO Y, et al. High temperature application of diamond power device[J]. Diamond and Related Materials, 2012, 24: 201-205.

    [70] [70] UMEZAWA H, NAGASE M, KATO Y, et al. Diamond vertical Schottky barrier diode with Al2O3 field plate[J]. Materials Science Forum, 2012, 717/718/719/720: 1319-1321.

    [71] [71] ZHAO D, LIU Z C, WANG J, et al. Reduction in reverse leakage current of diamond vertical Schottky barrier diode using SiNX field plate structure[J]. Results in Physics, 2019, 13: 102250.

    [72] [72] YU X X, ZHOU J J, WANG Y F, et al. Breakdown enhancement of diamond Schottky barrier diodes using boron implanted edge terminations[J]. Diamond and Related Materials, 2019, 92: 146-149.

    [73] [73] ZHANG S M, LI Q, WANG J, et al. High breakdown electric field diamond Schottky barrier diode with SnO2 field plate[J]. IEEE Transactions on Electron Devices, 2022, 69(12): 6917-6921.

    [74] [74] LI Q, WANG J, SHAO G Q, et al. Breakdown voltage enhancement of vertical diamond Schottky barrier diode with annealing method and AlO field plate structure[J]. IEEE Electron Device Letters, 2022, 43(11): 1937-1940.

    [75] [75] LI Q, WANG J, CHEN G Q, et al. Breakdown voltage enhancement of vertical diamond Schottky barrier diodes by selective growth nitrogen-doped diamond field plate[J]. Diamond and Related Materials, 2023, 134: 109799.

    [76] [76] AL-AHMADI N A. Metal oxide semiconductor-based Schottky diodes: a review of recent advances[J]. Materials Research Express, 2020, 7(3): 032001.

    [77] [77] SHAO G Q, WANG J, LIU Z C, et al. Performance-improved vertical Zr/diamond Schottky barrier diode with lanthanum hexaboride interfacial layer[J]. IEEE Electron Device Letters, 2021, 42(9): 1366-1369.

    [78] [78] WANG J, SHAO G Q, CHEN G Q, et al. Schottky barrier height modulation of Zr/p-diamond Schottky contact by inserting ultrathin atomic layer-deposited Al2O3[J]. IEEE Transactions on Electron Devices, 2021, 68(12): 5995-6000.

    [79] [79] ZHANG S M, WANG J, LI Q, et al. Improved-performance diamond Schottky barrier diode with tin oxide interlayer[J]. IEEE Transactions on Electron Devices, 2022, 69(11): 6260-6264.

    [80] [80] REZEK B, WATANABE H, NEBEL C E. High carrier mobility on hydrogen terminated 〈100〉 diamond surfaces[J]. Applied Physics Letters, 2006, 88(4): 042110.

    [81] [81] TSUGAWA K, NODA H, HIROSE K, et al. Schottky barrier heights, carrier density, and negative electron affinity of hydrogen-terminated diamond[J]. Physical Review B, 2010, 81(4): 045303.

    [82] [82] MAIER F, RISTEIN J, LEY L. Electron affinity of plasma-hydrogenated and chemically oxidized diamond (100) surfaces[J]. Physical Review B, 2001, 64(16): 165411.

    [83] [83] RIETWYK K J, WONG S L, CAO L, et al. Work function and electron affinity of the fluorine-terminated (100) diamond surface[J]. Applied Physics Letters, 2013, 102(9): 091604.

    [84] [84] UEDA K, KAWAMOTO K, ASANO H. High-temperature and high-voltage characteristics of Cu/diamond Schottky diodes[J]. Diamond and Related Materials, 2015, 57: 28-31.

    [85] [85] ZHAO D, LIU Z C, WANG J, et al. Fabrication of dual-termination Schottky barrier diode by using oxygen-/ fluorine-terminated diamond[J]. Applied Surface Science, 2018, 457: 411-416.

    [86] [86] ZHAO D, LIU Z C, WANG J, et al. Performance improved vertical diamond Schottky barrier diode with fluorination-termination structure[J]. IEEE Electron Device Letters, 2019, 40(8): 1229-1232.

    [87] [87] LIU Z C, YI W Y, ZHAO D, et al. Diamond avalanche diodes for obtaining high-voltage pulse with subnanosecond front edge[J]. AIP Advances, 2020, 10(6): 065015.

    [88] [88] BIN ABU BAKAR M H, TRAORE A, GUO J J, et al. Optically detected magnetic resonance of nitrogen-vacancy centers in vertical diamond Schottky diodes[J]. Japanese Journal of Applied Physics, 2022, 61(SC): SC1061.

    [89] [89] SURDI H, KOECK F A M, AHMAD M F, et al. Demonstration and analysis of ultrahigh forward current density diamond diodes[J]. IEEE Transactions on Electron Devices, 2022, 69(1): 254-261.

    [90] [90] HAZDRA P, LAPOSA A, OBNˇ Z, et al. Pseudo-vertical Mo/Au Schottky diodes on {113} oriented boron doped homoepitaxial diamond layers[J]. Diamond and Related Materials, 2022, 126: 109088.

    [91] [91] KWAK T, HAN S H, CHOI U, et al. Diamond Schottky barrier diode fabricated on high-crystalline quality misoriented heteroepitaxial (001) diamond substrate[J]. Diamond and Related Materials, 2023, 133: 109750.

    [92] [92] SHAO G Q, WANG J, WANG Y F, et al. Inhomogeneous heterojunction performance of Zr/diamond Schottky diode with Gaussian distribution of barrier heights for high sensitivity temperature sensor[J]. Sensors and Actuators A: Physical, 2022, 347: 113906.

    Tools

    Get Citation

    Copy Citation Text

    PENG Bo, LI Qi, ZHANG Shumiao, FAN Shuwei, WANG Ruozheng, WANG Hongxing. Research Progress of Diamond Schottky Barrier Diodes[J]. Journal of Synthetic Crystals, 2023, 52(5): 732

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 22, 2023

    Accepted: --

    Published Online: Jun. 11, 2023

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics