Laser Technology, Volume. 43, Issue 2, 263(2019)

Influence of process parameters on the residual stress of cladding layers by laser additive manufacturing

GONG Chen1, WANG Lifang2, ZHU Gangxian1、*, and SONG Tianlin1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(15)

    [1] [1] WANG H M. High performance metal component manufacturing technology opens a new chapter in national defense[J]. Defence Manu- facturing Technology, 2013, 6(3): 5-7(in Chinese).

    [2] [2] DUTTA B, SINGH V, NATU H, et al. Direct metal deposition[J]. Advanced Materials & Processes, 2009, 167(3): 29-31.

    [3] [3] JIA Sh, FU G Y, SHI S H, et al. Laser direct forming research of irregular-section entity base on inside-laser powder feeding and robotic technology[J]. Laser Technology, 2016, 40(5): 654-659(in Chinese).

    [4] [4] YANG J, CHEN J, YANG H O, et al. Experimental study on residual stress distribution of laser rapid forming process[J]. Rare Metal Materials and Engineering, 2004, 33(12): 1304-1307(in Chin-ese).

    [5] [5] KONG F, KOVACEVIC R. Modeling of heat transfer and fluid flow in the laser multilayered cladding process[J]. Metallurgical & Materials Transactions, 2010, B41(6): 1310-1320.

    [6] [6] DAVIM J P, OLIVEIRA C, CARDOSO A. Predicting the geometric form of clad in laser cladding by powder using multiple regression analysis (MRA)[J]. Materials and Design, 2008,29(2):554-557.

    [7] [7] LIU X M, GUAN Z Z. The relationship between the process parameter of laser cladding by powder feeding method and the laser layer parameters[J]. Transactions of Metal Heat Treatment, 1998,19(3): 29-34(in Chinese).

    [8] [8] SHI L K, GAO S Y, XI M Z, et al. Finite element simulation for laser direct depositing processes of metallic vertical thin wall parts[J]. Acta Metallurgica Sinica, 2006, 42(5):454-458(in Chinese).

    [9] [9] ZHANG G Z, HU R X, CHEN J G. ANSYS 10.0 thermodynamic finite element analysis example course[M]. Beijing: China Machine Press, 2007: 77-82(in Chinese).

    [10] [10] LIU Sh H, WAN P T, HU L G, et al. State-of-the-art research on the temperature field in laser welding[J]. China Mechanical Engineering, 2001,12(4): 478-481 (in Chinese).

    [11] [11] TAN Zh, GUO G W. Thermal properties of engineering alloys[M]. Beijing: Metallurgical Industry Press, 1996:4-78 (in Chinese).

    [12] [12] JIANG W, YAHIAOUI K, HALL F R. Finite element predictions of temperature distributions in a multipass welded piping branch junction[J]. Journal of Pressure Vessel, 2005,127(1):7-12.

    [13] [13] GU J Q, LUO F, YAO J H. Numerical simulation of residual stress during lser cladding[J]. Laser & Optoelectronics Progress, 2010,47(10):81-86(in Chinese).

    [14] [14] HUANG W D, LIN X, CHEN J, et al. Laser additive manufacturing[M] Xi’an: Northwestern Polytechnical University Press, 2007:250-251(in Chinese).

    [15] [15] ZHU G X, LI D C, ZHANG A F, et al. The influence of laser and powder defocusing characteristics on the surface quality in laser direct metal deposition[J]. Optics & Laser Technology, 2012,44(2):349-356.

    CLP Journals

    [1] Deng Dewei, Chang Zhandong, Ma Yunbo, Sun Qi, Ma Yushan, Liu Haibo, Huang Zhiye. Influence of Process Parameters on Microstructure and Residual Stress of 316L Laser Cladding layer[J]. APPLIED LASER, 2021, 41(1): 83

    Tools

    Get Citation

    Copy Citation Text

    GONG Chen, WANG Lifang, ZHU Gangxian, SONG Tianlin. Influence of process parameters on the residual stress of cladding layers by laser additive manufacturing[J]. Laser Technology, 2019, 43(2): 263

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 13, 2018

    Accepted: --

    Published Online: Jul. 10, 2019

    The Author Email: ZHU Gangxian (gxzhu@suda.edu.cn)

    DOI:10.7510/jgjs.issn.1001-3806.2019.02.021

    Topics