Chinese Optics, Volume. 17, Issue 4, 842(2024)
Phase gradient estimation using Bayesian neural network
Fig. 1. Bayesian deep neural network architecture for phase gradient calculation
Fig. 2. Phase maps generation process. (a) Pseudo-random numbers; (b) phase maps using Lagrange extrapolation; (c) phase gradient label; (d) wrapped phase map with speckle noise
Fig. 3. The prediction process of phase gradient using Bayesian neural network
Fig. 4. Phase gradient estimated using different methods. (a) Phase maps with different noise levels; phase gradient results obtained by (b) theorectical calculation; (c) vector method and (d) Bayesian neural network; (e) BNN model uncertainty; (f) error distributions of phase gradient by using BNN model
Fig. 5. (a) Schematic diagram and (b) photograph of line-field spectral-domain OCT system
Fig. 6. Experimental results of silicone film deformation. (a) Wrapped phase-difference map; (b) phase gradient estimated using vector method; (c) phase gradient estimated using BNN; (d) BNN model uncertainty
Fig. 7. Experimental results of phase decorrelation. (a)-(b) Wrapped phase-difference maps corresponding to the loading 12 μm and 14 μm, respectively; (c)-(d) results of phase gradient estimated using BNN; (e)-(f) BNN model uncertainty
Get Citation
Copy Citation Text
Kang-yang ZHANG, Zi-hao NI, Bo DONG, Yu-lei BAI. Phase gradient estimation using Bayesian neural network[J]. Chinese Optics, 2024, 17(4): 842
Received: Sep. 26, 2023
Accepted: --
Published Online: Aug. 9, 2024
The Author Email: