Chinese Optics, Volume. 17, Issue 4, 842(2024)

Phase gradient estimation using Bayesian neural network

Kang-yang ZHANG1, Zi-hao NI1, Bo DONG1,2, and Yu-lei BAI1,2、*
Author Affiliations
  • 1School of Automation, Guangdong University of Technology, Guangzhou 510006, China
  • 2Key Laboratory of Intelligent Detection and The Internet of Things in Manufacturing(GDUT), Ministry of Education, Guangzhou 510006, China
  • show less
    Figures & Tables(7)
    Bayesian deep neural network architecture for phase gradient calculation
    Phase maps generation process. (a) Pseudo-random numbers; (b) phase maps using Lagrange extrapolation; (c) phase gradient label; (d) wrapped phase map with speckle noise
    The prediction process of phase gradient using Bayesian neural network
    Phase gradient estimated using different methods. (a) Phase maps with different noise levels; phase gradient results obtained by (b) theorectical calculation; (c) vector method and (d) Bayesian neural network; (e) BNN model uncertainty; (f) error distributions of phase gradient by using BNN model
    (a) Schematic diagram and (b) photograph of line-field spectral-domain OCT system
    Experimental results of silicone film deformation. (a) Wrapped phase-difference map; (b) phase gradient estimated using vector method; (c) phase gradient estimated using BNN; (d) BNN model uncertainty
    Experimental results of phase decorrelation. (a)-(b) Wrapped phase-difference maps corresponding to the loading 12 μm and 14 μm, respectively; (c)-(d) results of phase gradient estimated using BNN; (e)-(f) BNN model uncertainty
    Tools

    Get Citation

    Copy Citation Text

    Kang-yang ZHANG, Zi-hao NI, Bo DONG, Yu-lei BAI. Phase gradient estimation using Bayesian neural network[J]. Chinese Optics, 2024, 17(4): 842

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Sep. 26, 2023

    Accepted: --

    Published Online: Aug. 9, 2024

    The Author Email:

    DOI:10.37188/CO.2023-0168

    Topics