Chinese Journal of Lasers, Volume. 50, Issue 17, 1714002(2023)

Scanning Tunneling Microscope Based on Strong‑Field Terahertz Pulse

Jianqiang Gu* and Youwen An
Author Affiliations
  • Center for THz Waves, College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
  • show less
    References(83)

    [1] Kampfrath T, Tanaka K, Nelson K A. Resonant and nonresonant control over matter and light by intense terahertz transients[J]. Nature Photonics, 7, 680-690(2013).

    [2] Ulbricht R, Hendry E, Shan J E et al. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy[J]. Reviews of Modern Physics, 83, 543-586(2011).

    [3] Spies J A, Neu J, Tayvah U T et al. Terahertz spectroscopy of emerging materials[J]. The Journal of Physical Chemistry C, 124, 22335-22346(2020).

    [4] Dhillon S S, Vitiello M S, Linfield E H et al. The 2017 terahertz science and technology roadmap[J]. Journal of Physics D: Applied Physics, 50, 043001(2017).

    [5] Joyce H J, Boland J L, Davies C L et al. A review of the electrical properties of semiconductor nanowires: insights gained from terahertz conductivity spectroscopy[J]. Semiconductor Science and Technology, 31, 103003(2016).

    [6] Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy and imaging: modern techniques and applications[J]. Laser & Photonics Reviews, 5, 124-166(2011).

    [7] Zhu Y M, Shi C J, Wu X et al. Terahertz spectroscopy algorithms for biomedical detection[J]. Acta Optica Sinica, 41, 0130001(2021).

    [8] Jiang X L, Xu Y. Nondestructive testing of corrosion thickness of steel plates under coatings by terahertz time-domain spectroscopy[J]. Acta Optica Sinica, 42, 1312001(2022).

    [9] Cocker T L, Jelic V, Gupta M et al. An ultrafast terahertz scanning tunnelling microscope[J]. Nature Photonics, 7, 620-625(2013).

    [10] Cocker T L, Peller D, Yu P et al. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging[J]. Nature, 539, 263-267(2016).

    [11] Scholes G D, Fleming G R, Chen L X et al. Using coherence to enhance function in chemical and biophysical systems[J]. Nature, 543, 647-656(2017).

    [12] Bernardi M, Vigil-Fowler D, Lischner J et al. Ab initio study of hot carriers in the first picosecond after sunlight absorption in silicon[J]. Physical Review Letters, 112, 257402(2014).

    [13] Reimann J, Schlauderer S, Schmid C P et al. Subcycle observation of lightwave-driven Dirac currents in a topological surface band[J]. Nature, 562, 396-400(2018).

    [14] Porer M, Leierseder U, Ménard J M et al. Non-thermal separation of electronic and structural orders in a persisting charge density wave[J]. Nature Materials, 13, 857-861(2014).

    [15] Eichberger M, Schäfer H, Krumova M et al. Snapshots of cooperative atomic motions in the optical suppression of charge density waves[J]. Nature, 468, 799-802(2010).

    [16] Jailaubekov A E, Willard A P, Tritsch J R et al. Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics[J]. Nature Materials, 12, 66-73(2013).

    [17] Hong X P, Kim J, Shi S F et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures[J]. Nature Nanotechnology, 9, 682-686(2014).

    [18] Basov D N, Fogler M M, de Abajo F J G. Polaritons in van der Waals materials[J]. Science, 354, aag1992(2016).

    [19] Baierl S, Hohenleutner M, Kampfrath T et al. Nonlinear spin control by terahertz-driven anisotropy fields[J]. Nature Photonics, 10, 715-718(2016).

    [20] van der Valk N C J, Planken P C M. Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip[J]. Applied Physics Letters, 81, 1558-1560(2002).

    [21] Chen H T, Kersting R, Cho G C. Terahertz imaging with nanometer resolution[J]. Applied Physics Letters, 83, 3009-3011(2003).

    [22] Chen H T, Kraatz S, Cho G C et al. Identification of a resonant imaging process in apertureless near-field microscopy[J]. Physical Review Letters, 93, 267401(2004).

    [23] Wang K L, Mittleman D M, van der Valk N C J et al. Antenna effects in terahertz apertureless near-field optical microscopy[J]. Applied Physics Letters, 85, 2715-2717(2004).

    [24] Planken P C M, van der Valk N C J. Spot-size reduction in terahertz apertureless near-field imaging[J]. Optics Letters, 29, 2306-2308(2004).

    [25] Auston D H, Cheung K P, Smith P R. Picosecond photoconducting Hertzian dipoles[J]. Applied Physics Letters, 45, 284-286(1984).

    [26] Smith P R, Auston D H, Nuss M C. Subpicosecond photoconducting dipole antennas[J]. IEEE Journal of Quantum Electronics, 24, 255-260(1988).

    [27] Xu L, Zhang X C, Auston D H. Terahertz beam generation by femtosecond optical pulses in electro-optic materials[J]. Applied Physics Letters, 61, 1784-1786(1992).

    [28] Wu Q, Zhang X C. Free-space electro-optic sampling of terahertz beams[J]. Applied Physics Letters, 67, 3523-3525(1995).

    [29] Sun F G, Wagoner G A, Zhang X C. Measurement of free-space terahertz pulses via long-lifetime photoconductors[J]. Applied Physics Letters, 67, 1656-1658(1995).

    [30] Jepsen P U, Jacobsen R H, Keiding S R. Generation and detection of terahertz pulses from biased semiconductor antennas[J]. Journal of the Optical Society of America B, 13, 2424-2436(1996).

    [31] Moon K, Park H, Kim J et al. Subsurface nanoimaging by broadband terahertz pulse near-field microscopy[J]. Nano Letters, 15, 549-552(2015).

    [32] Eisele M, Cocker T L, Huber M A et al. Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution[J]. Nature Photonics, 8, 841-845(2014).

    [33] Huber M A, Mooshammer F, Plankl M et al. Femtosecond photo-switching of interface polaritons in black phosphorus heterostructures[J]. Nature Nanotechnology, 12, 207-211(2017).

    [34] Wagner M, Fei Z, McLeod A S et al. Ultrafast and nanoscale plasmonic phenomena in exfoliated graphene revealed by infrared pump-probe nanoscopy[J]. Nano Letters, 14, 894-900(2014).

    [35] Wagner M, McLeod A S, Maddox S J et al. Ultrafast dynamics of surface plasmons in InAs by time-resolved infrared nanospectroscopy[J]. Nano Letters, 14, 4529-4534(2014).

    [36] Ni G X, Wang L, Goldflam M D et al. Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene[J]. Nature Photonics, 10, 244-247(2016).

    [37] Yoshioka K, Katayama I, Minami Y et al. Real-space coherent manipulation of electrons in a single tunnel junction by single-cycle terahertz electric fields[J]. Nature Photonics, 10, 762-765(2016).

    [38] Jelic V, Iwaszczuk K, Nguyen P H et al. Ultrafast terahertz control of extreme tunnel currents through single atoms on a silicon surface[J]. Nature Physics, 13, 591-598(2017).

    [39] Peller D, Kastner L Z, Buchner T et al. Sub-cycle atomic-scale forces coherently control a single-molecule switch[J]. Nature, 585, 58-62(2020).

    [40] Hasegawa Y, Avouris P. Direct observation of standing wave formation at surface steps using scanning tunneling spectroscopy[J]. Physical Review Letters, 71, 1071-1074(1993).

    [41] Crommie M F, Lutz C P, Eigler D M. Imaging standing waves in a two-dimensional electron gas[J]. Nature, 363, 524-527(1993).

    [42] Voigtländer B. Scanning tunneling microscopy[M]. Scanning probe microscopy. Nanoscience and technology, 279-308(2015).

    [43] Ammerman S E, Jelic V, Wei Y et al. Lightwave-driven scanning tunnelling spectroscopy of atomically precise graphene nanoribbons[J]. Nature Communications, 12, 6794(2021).

    [44] Repp J, Meyer G, Stojković S M et al. Molecules on insulating films: scanning-tunneling microscopy imaging of individual molecular orbitals[J]. Physical Review Letters, 94, 026803(2005).

    [45] Liljeroth P, Repp J, Meyer G. Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules[J]. Science, 317, 1203-1206(2007).

    [46] Schulz F, Ijäs M, Drost R et al. Many-body transitions in a single molecule visualized by scanning tunnelling microscopy[J]. Nature Physics, 11, 229-234(2015).

    [47] Kalff F E, Rebergen M P, Fahrenfort E et al. A kilobyte rewritable atomic memory[J]. Nature Nanotechnology, 11, 926-929(2016).

    [48] Drost R, Ojanen T, Harju A et al. Topological states in engineered atomic lattices[J]. Nature Physics, 13, 668-671(2017).

    [49] Achal R, Rashidi M, Croshaw J et al. Lithography for robust and editable atomic-scale silicon devices and memories[J]. Nature Communications, 9, 2778(2018).

    [50] Yoshioka K, Katayama I, Arashida Y et al. Tailoring single-cycle near field in a tunnel junction with carrier-envelope phase-controlled terahertz electric fields[J]. Nano Letters, 18, 5198-5204(2018).

    [51] Yoshida S, Hirori H, Tachizaki T et al. Subcycle transient scanning tunneling spectroscopy with visualization of enhanced terahertz near field[J]. ACS Photonics, 6, 1356-1364(2019).

    [52] Tian Y, Yang F, Guo C Y et al. Recent advances in ultrafast time-resolved scanning tunneling microscopy[J]. Surface Review and Letters, 25, 1841003(2018).

    [53] Peller D, Roelcke C, Kastner L Z et al. Quantitative sampling of atomic-scale electromagnetic waveforms[J]. Nature Photonics, 15, 143-147(2021).

    [54] Müller M, Martín Sabanés N, Kampfrath T et al. Phase-resolved detection of ultrabroadband THz pulses inside a scanning tunneling microscope junction[J]. ACS Photonics, 7, 2046-2055(2020).

    [55] Luo Y, Jelic V, Chen G et al. Nanoscale terahertz STM imaging of a metal surface[J]. Physical Review B, 102, 205417(2020).

    [56] Lange S L, Noori N K, Kristensen T M B et al. Ultrafast THz-driven electron emission from metal metasurfaces[J]. Journal of Applied Physics, 128, 070901(2020).

    [57] Kang T, Bahk Y M, Kim D S. Terahertz quantum plasmonics at nanoscales and angstrom scales[J]. Nanophotonics, 9, 435-451(2020).

    [58] Du S Q, Yoshida K, Zhang Y et al. Terahertz dynamics of electron-vibron coupling in single molecules with tunable electrostatic potential[J]. Nature Photonics, 12, 608-612(2018).

    [59] Cocker T L, Jelic V, Hillenbrand R et al. Nanoscale terahertz scanning probe microscopy[J]. Nature Photonics, 15, 558-569(2021).

    [60] Abdo M, Sheng S X, Rolf-Pissarczyk S et al. Variable repetition rate THz source for ultrafast scanning tunneling microscopy[J]. ACS Photonics, 8, 702-708(2021).

    [61] Taucer M, Livadaru L, Piva P G et al. Single-electron dynamics of an atomic silicon quantum dot on the H-Si(100)-(2×1) surface[J]. Physical Review Letters, 112, 256801(2014).

    [62] Repp J, Meyer G, Olsson F E et al. Controlling the charge state of individual gold adatoms[J]. Science, 305, 493-495(2004).

    [63] Rashidi M, Vine W, Dienel T et al. Initiating and monitoring the evolution of single electrons within atom-defined structures[J]. Physical Review Letters, 121, 166801(2018).

    [64] Rashidi M, Taucer M, Ozfidan I et al. Time-resolved imaging of negative differential resistance on the atomic scale[J]. Physical Review Letters, 117, 276805(2016).

    [65] Rashidi M, Lloyd E, Huff T R et al. Resolving and tuning carrier capture rates at a single silicon atom gap state[J]. ACS Nano, 11, 11732-11738(2017).

    [66] Olsson F E, Paavilainen S, Persson M et al. Multiple charge states of Ag atoms on ultrathin NaCl films[J]. Physical Review Letters, 98, 176803(2007).

    [67] Yan S C, Malavolti L, Burgess J A J et al. Nonlocally sensing the magnetic states of nanoscale antiferromagnets with an atomic spin sensor[J]. Science Advances, 3, e1603137(2017).

    [68] Yan S C, Choi D J, Burgess J A J et al. Control of quantum magnets by atomic exchange bias[J]. Nature Nanotechnology, 10, 40-45(2015).

    [69] Paul W, Yang K, Baumann S et al. Control of the millisecond spin lifetime of an electrically probed atom[J]. Nature Physics, 13, 403-407(2017).

    [70] Natterer F D, Yang K, Paul W et al. Reading and writing single-atom magnets[J]. Nature, 543, 226-228(2017).

    [71] Natterer F D, Donati F, Patthey F et al. Thermal and magnetic-field stability of holmium single-atom magnets[J]. Physical Review Letters, 121, 027201(2018).

    [72] Loth S, Etzkorn M, Lutz C P et al. Measurement of fast electron spin relaxation times with atomic resolution[J]. Science, 329, 1628-1630(2010).

    [73] Hsu P J, Kubetzka A, Finco A et al. Electric-field-driven switching of individual magnetic skyrmions[J]. Nature Nanotechnology, 12, 123-126(2017).

    [74] Baumann S, Paul W, Choi T et al. Electron paramagnetic resonance of individual atoms on a surface[J]. Science, 350, 417-420(2015).

    [75] Heinrich A J, Lutz C P, Gupta J A et al. Molecule cascades[J]. Science, 298, 1381-1387(2002).

    [76] Swart I, Sonnleitner T, Niedenführ J et al. Controlled lateral manipulation of molecules on insulating films by STM[J]. Nano Letters, 12, 1070-1074(2012).

    [77] Esat T, Friedrich N, Tautz F S et al. A standing molecule as a single-electron field emitter[J]. Nature, 558, 573-576(2018).

    [78] Huff T, Labidi H, Rashidi M et al. Binary atomic silicon logic[J]. Nature Electronics, 1, 636-643(2018).

    [79] Kuhnke K, Große C, Merino P et al. Atomic-scale imaging and spectroscopy of electroluminescence at molecular interfaces[J]. Chemical Reviews, 117, 5174-5222(2017).

    [80] Zhang L, Yu Y J, Chen L G et al. Electrically driven single-photon emission from an isolated single molecule[J]. Nature Communications, 8, 580(2017).

    [81] Schumacher Z, Spielhofer A, Miyahara Y et al. The limit of time resolution in frequency modulation atomic force microscopy by a pump-probe approach[J]. Applied Physics Letters, 110, 053111(2017).

    [82] Martins B V C, Smeu M, Livadaru L et al. Conductivity of Si(111)-(7 × 7): the role of a single atomic step[J]. Physical Review Letters, 112, 246802(2014).

    [83] Just S, Blab M, Korte S et al. Surface and step conductivities on Si(111) surfaces[J]. Physical Review Letters, 115, 066801(2015).

    Tools

    Get Citation

    Copy Citation Text

    Jianqiang Gu, Youwen An. Scanning Tunneling Microscope Based on Strong‑Field Terahertz Pulse[J]. Chinese Journal of Lasers, 2023, 50(17): 1714002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: terahertz technology

    Received: May. 4, 2023

    Accepted: Jul. 11, 2023

    Published Online: Aug. 28, 2023

    The Author Email: Gu Jianqiang (gjq@tju.edu.cn)

    DOI:10.3788/CJL230787

    Topics