Acta Optica Sinica, Volume. 44, Issue 5, 0527001(2024)
Microcavity-Assisted Spin Dynamics Characteristics and Superradiant Phase Transition
[1] Anderson M H, Ensher J R, Matthews M R et al. Observation of Bose-Einstein condensation in a dilute atomic vapor[J]. Science, 269, 198-201(1995).
[2] Davis K B, Mewes M O, Andrews M R et al. Bose-Einstein condensation in a gas of sodium atoms[J]. Physical Review Letters, 75, 3969-3973(1995).
[3] Lin Y J, Jiménez-García K, Spielman I B. Spin-orbit-coupled Bose-Einstein condensates[J]. Nature, 471, 83-86(2011).
[4] Reyza T, Wei W, Zhou Y et al. Damping of collective excitations in two-component Bose-Einstein condensates using mean-field description[J]. Acta Optica Sinica, 43, 1027002(2023).
[5] Wang P J, Yu Z Q, Fu Z K et al. Spin-orbit coupled degenerate Fermi gases[J]. Physical Review Letters, 109, 095301(2012).
[6] Galitski V, Spielman I B. Spin-orbit coupling in quantum gases[J]. Nature, 494, 49-54(2013).
[7] Hamner C, Qu C L, Zhang Y P et al. Dicke-type phase transition in a spin-orbit-coupled Bose-Einstein condensate[J]. Nature Communications, 5, 4023(2014).
[8] Mancini M, Pagano G, Cappellini G et al. Observation of chiral edge states with neutral fermions in synthetic Hall ribbons[J]. Science, 349, 1510-1513(2015).
[9] Li J R, Huang W J, Shteynas B et al. Spin-orbit coupling and spin textures in optical superlattices[J]. Physical Review Letters, 117, 185301(2016).
[10] Livi L F, Cappellini G, Diem M et al. Synthetic dimensions and spin-orbit coupling with an optical clock transition[J]. Physical Review Letters, 117, 220401(2016).
[11] Song B, He C D, Zhang S C et al. Spin-orbit-coupled two-electron Fermi gases of ytterbium atoms[J]. Physical Review A, 94, 061604(2016).
[12] Kolkowitz S, Bromley S L, Bothwell T et al. Spin-orbit-coupled fermions in an optical lattice clock[J]. Nature, 542, 66-70(2017).
[13] Loss D, DiVincenzo D P. Quantum computation with quantum dots[J]. Physical Review A, 57, 120-126(1998).
[14] Hu X D, Das Sarma S. Spin-based quantum computation in multielectron quantum dots[J]. Physical Review A, 64, 042312(2001).
[15] Wesenberg J H, Ardavan A, Briggs G A D et al. Quantum computing with an electron spin ensemble[J]. Physical Review Letters, 103, 070502(2009).
[16] Kloeffel C, Loss D. Prospects for spin-based quantum computing in quantum dots[J]. Annual Review of Condensed Matter Physics, 4, 51-81(2013).
[17] Lvovsky A I, Sanders B C, Tittel W. Optical quantum memory[J]. Nature Photonics, 3, 706-714(2009).
[18] Boehme C, McCamey D R. Nuclear-spin quantum memory poised to take the lead[J]. Science, 336, 1239-1240(2012).
[19] Julsgaard B, Grezes C, Bertet P et al. Quantum memory for microwave photons in an inhomogeneously broadened spin ensemble[J]. Physical Review Letters, 110, 250503(2013).
[20] Zaiser S, Rendler T, Jakobi I et al. Enhancing quantum sensing sensitivity by a quantum memory[J]. Nature Communications, 7, 12279(2016).
[21] Degen C L, Reinhard F, Cappellaro P. Quantum sensing[J]. Reviews of Modern Physics, 89, 035002(2017).
[22] Poggiali F, Cappellaro P, Fabbri N. Optimal control for one-qubit quantum sensing[J]. Physical Review X, 8, 021059(2018).
[23] Wu C H, Fan J T, Chen G et al. Spin dynamics of a spin-orbit-coupled Bose-Einstein condensate in a Shaken harmonic trap[J]. Physical Review A, 99, 013617(2019).
[24] Xu W H, Shou Y C, Luo H L. Spin-orbit interaction of light[J]. Chinese Journal of Quantum Electronics, 39, 159-181(2022).
[25] Huang F, Jia X T. Spin-orbit coupling of Laguerre-gaussian beams on high-order Poincaré sphere in near field[J]. Laser & Optoelectronics Progress, 59, 0726001(2022).
[26] Zhai Y J, Chen Y Y, Zhang Y P. Spin-orbit-coupling-induced modulation instability[J]. Acta Optica Sinica, 43, 2102001(2023).
[27] Baumann K, Guerlin C, Brennecke F et al. Dicke quantum phase transition with a superfluid gas in an optical cavity[J]. Nature, 464, 1301-1306(2010).
[28] Wang C J, Gao C, Jian C M et al. Spin-orbit coupled spinor Bose-Einstein condensates[J]. Physical Review Letters, 105, 160403(2010).
[29] Fu Z K, Wang P J, Chai S J et al. Bose-Einstein condensate in a light-induced vector gauge potential using 1064 nm optical-dipole-trap lasers[J]. Physical Review A, 84, 043609(2011).
[30] Wu C J, Mondragon-Shem I, Zhou X F. Unconventional Bose-Einstein condensations from spin-orbit coupling[J]. Chinese Physics Letters, 28, 097102(2011).
[31] Sinha S, Nath R, Santos L. Trapped two-dimensional condensates with synthetic spin-orbit coupling[J]. Physical Review Letters, 107, 270401(2011).
[32] Hu H, Ramachandhran B, Pu H et al. Spin-orbit coupled weakly interacting Bose-Einstein condensates in harmonic traps[J]. Physical Review Letters, 108, 010402(2012).
[33] Zhang J Y, Ji S C, Chen Z et al. Collective dipole oscillations of a spin-orbit coupled Bose-Einstein condensate[J]. Physical Review Letters, 109, 115301(2012).
[34] Qu C L, Hamner C, Gong M et al. Observation of Zitterbewegungin a spin-orbit-coupled Bose-Einstein condensate[J]. Physical Review A, 88, 021604(2013).
[35] Olson A J, Wang S J, Niffenegger R J et al. Tunable Landau-Zener transitions in a spin-orbit-coupled Bose-Einstein condensate[J]. Physical Review A, 90, 013616(2014).
[36] Wu Z, Zhang L, Sun W et al. Realization of two-dimensional spin-orbit coupling for Bose-Einstein condensates[J]. Science, 354, 83-88(2016).
[37] Landig R, Hruby L, Dogra N et al. Quantum phases from competing short- and long-range interactions in an optical lattice[J]. Nature, 532, 476-479(2016).
[38] Léonard J, Morales A, Zupancic P et al. Monitoring and manipulating Higgs and Goldstone modes in a supersolid quantum gas[J]. Science, 358, 1415-1418(2017).
[39] Léonard J, Morales A, Zupancic P et al. Supersolid formation in a quantum gas breaking a continuous translational symmetry[J]. Nature, 543, 87-90(2017).
[40] Hruby L, Dogra N, Landini M et al. Metastability and avalanche dynamics in strongly correlated gases with long-range interactions[J]. Proceedings of the National Academy of Sciences of the United States of America, 115, 3279-3284(2018).
[41] Zhang Y, Chen M X, Li Y Y et al. Application and development prospects of optical micro-resonators[J]. Laser & Optoelectronics Progress, 52, 040002(2015).
[42] Zhang T C, Wu W, Yang P F et al. High-finesse micro-optical Fabry-Perot cavity and its applications in strongly coupled cavity quantum electrodynamics[J]. Acta Optica Sinica, 41, 0127001(2021).
[43] Kroeze R M, Guo Y D, Lev B L. Dynamical spin-orbit coupling of a quantum gas[J]. Physical Review Letters, 123, 160404(2019).
[44] Japha Y, Band Y B. Motion of a condensate in a shaken and vibrating harmonic trap[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 35, 2383-2389(2002).
[45] Price H M, Ozawa T, Goldman N. Synthetic dimensions for cold atoms from shaking a harmonic trap[J]. Physical Review A, 95, 023607(2017).
[46] Chen X, Jiang R L, Li J et al. Inverse engineering for fast transport and spin control of spin-orbit-coupled Bose-Einstein condensates in moving harmonic traps[J]. Physical Review A, 97, 013631(2018).
[47] Nagy D, Szirmai G, Domokos P. Self-organization of a Bose-Einstein condensate in an optical cavity[J]. The European Physical Journal D, 48, 127-137(2008).
Get Citation
Copy Citation Text
Chao Cui, Yanlin Feng. Microcavity-Assisted Spin Dynamics Characteristics and Superradiant Phase Transition[J]. Acta Optica Sinica, 2024, 44(5): 0527001
Category: Quantum Optics
Received: Nov. 7, 2023
Accepted: Dec. 13, 2023
Published Online: Mar. 11, 2024
The Author Email: Feng Yanlin (xiaogufyl89@163.com)
CSTR:32393.14.AOS231750