Resources Science, Volume. 42, Issue 4, 723(2020)

Spatiotemporal differentiation and influencing mechanism of urban land development intensity in the Yangtze River Delta

Qingke YANG1, Xuejun DUAN2、*, Zhifeng JIN3,4, Lei WANG2, and Yazhu WANG2
Author Affiliations
  • 1School of Public Administration, Nanjing University of Finance & Economics, Nanjing 210023, China
  • 2Nanjing Institute of Geography and Limnology, CAS, Nanjing 210008, China
  • 3School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
  • 4Jiangsu Institute of Land Surveying and Planning, Nanjing 210017, China
  • show less
    Figures & Tables(8)
    A theoretical framework of urban land development intensity
    Spatial distribution of urban land development intensity
    Local indicators of spatial association (LISA) of urban land development intensity
    • Table 1. Factors affecting urban land development intensity

      View table
      View in Article

      Table 1. Factors affecting urban land development intensity

      类型指标选取测算方法作用方向
      自然本底条件可开发用地比重(Dland)/%运用空间减法来计算:可开发用地比重= 1 - 不可建设土地面积(包括不可建设的湖泊河流水面、不可建设的陡岩石区等)比重-基本农田保护面积比重-已开发用地比重+/-
      社会发展水平城镇化率(DUrban)/%城镇人口/常住总人口+
      交通可达性(Traffic)/km依靠主要交通干线,各评价单元到中心城市(上海、南京、杭州、苏州、宁波)的时间和空间距离,具体测算方法参照文献[34]。+
      经济发展动力人均GDP(PGDP)/(万元/人)人均地区生产总值+
      地均固定资产投资(FInvest)/(万元/km2)固定资产投资总额/城市土地面积+
      产业发展高级度(Indust高级度指数(IH)= 用于度量第二、三产业相对第一产业转移的效应(θ1)+ 第二产业向第三产业转移的效应(θ2[25]-
      城市竞争能力地均财政支出(Finance)/(万元/km2)一般公共预算支出/城市土地面积+
      城市行政等级(Admin作为虚拟变量,按照城市行政级别高低,对县(县级市)、地级市、副省级、直辖市城市分别赋值1、2、3、4+
    • Table 2. Estimation of Moran’s I of urban land development intensity

      View table
      View in Article

      Table 2. Estimation of Moran’s I of urban land development intensity

      指标2000200520102015
      Moran’s I0.4390.3400.3970.394
      Z(I)36.54931.92634.52534.082
      E(I)0.0030.0020.0020.002
    • Table 3. Coefficient matrix of influencing factors

      View table
      View in Article

      Table 3. Coefficient matrix of influencing factors

      DlandDUrbanTrafficPGDPFInvestIndustFinanceAdmin
      Dland1
      DUrban0.0691
      Traffic0.1640.1541
      PGDP0.1350.5220.1641
      FInvest-0.1060.0190.0260.1611
      Indust0.3470.5210.0330.1790.2871
      Finance-0.4030.147-0.1140.2010.0810.1581
      Admin0.1370.1680.0840.0730.2600.1420.0471
    • Table 4. Regression results of oridinary least squares (OLS) model

      View table
      View in Article

      Table 4. Regression results of oridinary least squares (OLS) model

      自变量2000200520102015
      系数Sig.系数Sig.系数Sig.系数Sig.
      常数项-0.0480.166-0.1010.122-0.1550.040-0.1880.010
      Dland0.1540.0000.1040.0240.0960.1060.0790.225
      Durban0.1630.0350.1260.0740.2040.0010.0650.312
      Traffic0.1250.0460.1450.0750.2150.0030.2260.004
      PGDP0.7870.0111.1210.0000.5180.0000.4950.000
      Finvest0.9730.0470.4350.0250.4250.0030.3430.001
      Indust0.0790.4770.1340.3120.2660.0820.2180.059
      Finance-0.1500.7900.0530.883-0.3690.020-0.0040.963
      Admin0.1020.0190.0540.3170.1870.0000.2240.000
      R20.6780.6250.7120.652
      调整R20.6140.5290.6810.608
      F-statistics19.18327.30839.34432.732
      Sig.0.0000.0000.0000.000
    • Table 5. Regression results of structural equation modeling (SEM)

      View table
      View in Article

      Table 5. Regression results of structural equation modeling (SEM)

      自变量2000200520102015
      Model 1Model 2Model 3Model 1Model 2Model 3Model 1Model 2Model 3Model 1Model 2Model 3
      常数项-0.207-0.148**-0.219-0.020-0.146-0.316*-0.215-0.229*-0.141**-0.318-0.331*-0.379**
      Dland0.135***0.155**0.138***-0.0150.170***0.130**-0.025*0.316**0.115**0.0710.198**0.086
      Durban0.212***0.171**0.317***0.132*0.361***0.209***0.196**0.072**
      Traffic0.173**0.124**0.355***0.151*0.351***0.218**0.324***0.231**
      PGDP1.007**0.769**1.338**1.127**0.661***0.515*0.563**0.501
      Finvest0.926*0.937*0.429***0.431**0.503**0.441**0.313**0.348
      Indust0.222**0.0920.1860.1400.515**0.302**0.299**0.224**
      Finance0.5100.1640.208*0.0590.028**0.089***0.108*0.012
      Admin0.103*0.1240.1020.115*0.097**0.0580.200**0.163**0.1880.348**0.209***0.228***
      Lambda-0.233-0.181-0.150-0.422**-0.017-0.001-0.239-0.204-0.224-0.142-0.117-0.014
      R20.6080.6060.6530.5350.6930.7230.6620.7180.7880.7670.7220.755
      LOG L106.686106.549112.25270.89690.34794.93575.81884.10797.15890.76978.16584.077
      LR Test0.237-0.013-0.0060.2320.0390.0450.279-0.011-0.0210.0040.0070.040
      AIC-201.602-193.202-207.650-130.939-169.841-173.015-140.781-157.360-177.463-106.684-145.475-151.300
      SC-188.002-187.803-185.990-116.499-155.401-151.355-126.341-142.919-155.802-92.244-131.035-129.640
    Tools

    Get Citation

    Copy Citation Text

    Qingke YANG, Xuejun DUAN, Zhifeng JIN, Lei WANG, Yazhu WANG. Spatiotemporal differentiation and influencing mechanism of urban land development intensity in the Yangtze River Delta[J]. Resources Science, 2020, 42(4): 723

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jul. 31, 2019

    Accepted: --

    Published Online: Apr. 15, 2021

    The Author Email: DUAN Xuejun (xjduan@niglas.ac.cn)

    DOI:10.18402/resci.2020.04.11

    Topics