Chinese Journal of Lasers, Volume. 36, Issue 7, 1686(2009)
Cooling Technology for High-Power Solid-State Laser
[1] [1] M. B. Bowers, I. Mudawar. High flux boiling in low flow rate, low pressure drop mini-channel and micro-channel heat sinks[J]. International Journal of Heat and Mass Transfer, 1994, 37(2): 321~332
[2] [2] Tuckerman, David B, Pease, R. Fabian. Microcapillary thermal interface technology for VLSI packaging[J]. Digest of Technical Papers-Symposium on VLSI Technology, 1983, p60~61
[3] [3] William J. Benett, Barry L. Freitas, et al.. Microchannel heatsinks for high average power laser diode arrays [C]. Proc. SPIE, 1992,1634(453) : 453~465
[4] [4] R. Beach. Modular microchannel cooled heatsinks for high average power laser diode arrays[J]. IEEE J.Quant. Electr, 1992, 28(4): 966~976
[5] [5] Harpole, George M., et al. Micro-channel heat exchanger optimization[C]. IEEE Semiconductor Thermal and Temperature Measurement Symposium, Feb, 1991, p59~63
[6] [6] Huang Zhe. High efficiency,high power 808nm laser array and stacked arrays optimized for elevated temperature operation[J]. OME Information, 2004(11)
[7] [7] Li Qifeng, Lü Wenqiang, Wu Deyong, et al.. Fabrication of V-shaped silicon microchannei cooler[J]. High Power Laser and Particle Beams, 2005, 17 (SO): 114~116
[8] [8] Lü Wenqiang, Tu Bo, Wei Bin, et al.. Micro-channel heatsink module for high power diode laser[J].High Power Laser and Particle Beams, 2005, 17(SO): 83~86
[9] [9] Liu Yun, Liao Xinsheng, Qin Li, et al.. Oxygen-free copper microchannel heat sink of high power semiconductor laser[J]. Chinese J. Luminescence, 2005, 26(1): 109~114
[10] [10] Yun Liu, Xinsheng Liao, et al.. Novel efficient compact package of high-power laser diode arrays with single piece oxygen-free copper microchannel heat sink cooling[J]. Proceedings of the SPIE-The International Society for Optical Engineering, 2004, 5280(1): 429~433
[11] [11] Yitshak Tzuk, Alon Tal, Sharon Goldring, et al.. Diamond cooling of high-power diode-pumped solid-state lasers[J]. IEEE Journal of Quantum Electronics, 2004, 40(3): 262~269
[12] [12] Hsian P. Chou, Yu-Lin Wang, Victor H. Hasson. Compact and eficient DPSS.laser using diamond-cooled technology[C]. Proceedings of SPIE, 2004, 5448: 550~560
[13] [13] J. Yang, L. Chow, M. Pais. Nucleate boiling heat transfer in spray cooling[J]. ASME J. Heat Transfer, 1996, 118: 668~671
[14] [14] Bohumil Horacek, Kenneth T. Kiger, Jungho Kim. Single nozzle spray cooling heat transfer mechanisms[J]. International Journal of Heat and Mass Transfer, 2005, 48: 1425~1438
[15] [15] M.R. Pais, L.C. Chow, E.T. Mahefkey. Surface roughness and its effects on the heat transfer mechanism in spray cooling[J]. Heat Transfer ,1992,114: 211~219
[16] [16] D.P. Rini, R.H. Chen, L.C. Chow. Bubble behavior and nucleate boiling heat transfer in saturated FC-72 spray cooling[J]. Heat Transfer, 2002, 124: 63~72
[17] [17] K.J. Choi,S.C. Yao. Mechanism of film boiling heat transfer of normally impacting spray[J]. Int. J. Heat Transfer , 1987, 30: 311~318
[18] [18] C. Sodtke, P.Stephan. Spray cooling on micro structured surfaces[J]. Heat and Mass Transfer,2007,50: 4089~4097
[19] [19] E. Silk, J. Kim, K. Kiger. Investigation of enhanced surface spray cooling[C]. Proc. of IMECE, 2004, Anaheim (USA), 2004.
[20] [20] Gao Shan, Qu Wei, Yao Wei. Flow and heat transfer of droplet impinging on hot flat surface during spray cooling[J]. Journal of Engineering Thermophysics,2007, 28: 221~224
[21] [21] Chen Wei, Luo Xiaobing, Cheng Ting, et al.. Experimental investigation on micro jet cooling system for high power LED[J]. Semiconductor Optoelectronics,2007, 2828(4): 478~482
[22] [22] COTTER T P. Principles and prospects for micro heat pipe[C]. Proceedings 5th International Heat Pipe Conference, 1984: 328~335
[23] [23] Petros, Mulugeta et al.. Totally conductive cooled, diode pumped, 2μm laser transmitter[J]. The International Society for Optical Engineering, v 5653, Lidar Remote Sensing for Industry and Environmental Monitoring V, 2005: 158~166
[24] [24] Xie Boping ,Yu, Z. Zack. Natural convection cooling for pump lasers in telecommunication applications[J]. American Society of Mechanical Engineers, EEP,1999, 26-2: 1943~1949
[25] [25] P. C. Lee, F. G. Tseng, C. Pan. Bubble dynamics n microchannels (I) single microchannel[J]. Int. J. Heat Mass Transfer, 2004,47: 5575~5589
[26] [26] H. Y. Li, F.G. Tseng, C. Pan, Bubble dynamics in microchannels (II) two parallel microchannels[J]. Int. J. Heat Mass Transfer, 2004,47: 5591~5601
[27] [27] G. Hetsroni, A. Mosyak, Z. Segal, G. Ziskind. Two-phase flow patterns in parallel microchannels[J]. International Journal of Multiphase Flow, 2003, 29: 341~360
[28] [28] L. Zhang, J. Koo, L. Jiang,et al.. Measurements and modeling of two-phase flow in microchannels with nearly constant heat flux boundary conditions[J]. Journal of microelectromechanical systems, 2002,11(1): 12~19
[29] [29] H. Y. Wu, P. Cheng. Liquid/Two-phase/Vapor alternating flow during boiling in microchannels at high heat flux[J]. Int. Comm.Heat Mass Transfer, 2003,30: 295~302
[30] [30] A. Serizawa, Z. Feng, Z. Kawara. Two-phase flow in microchannels[J]. Experimental Thermal and Fluid Science, 2002, 26: 703~714
[31] [31] M. Yu, T. Lin, C. Tseng. Heat transfer and flow pattern during two-phase flow boiling of R-134a in horizontal smooth and microfin tubes[J]. International Journal of Refrigeration, 2002, 25: 789~798
[32] [32] Xu J L, Zhang W, Wang Q W, et al.. Flow instability and transient flow patterns inside intercrossed silicon microchannel array in a micro-timescale[J]. International Journal of Multiphase Flow, 2006, 32: 568~592
[33] [33] S. G. Kandlikar. Nucleation characteristics and stability considerations during flow boiling in microchannels[J]. Experimental Thermal and Fluid Science, 2006,30: 441~ 447
[34] [34] Peng X F, Hu H Y, Wang B X. Boiling nucleation during liquid flow in microchannels[J]. International Journal of Heat and Mass Transfer, 1998,41: 101~106
[35] [35] Peng X F, Tien Y, Lee D J. Bubble nucleation in microchannels:statistical mechanics approach[J]. International Journal of Heat and Mass Transfer, 2001,44: 2957~2964
[36] [36] R. Mertz, A. Wein and M. Groll. Experimental investigation of flow boiling heat transfer in narrow channels[C]. In: Second European Thermal Sciences and 14th UIT National Heat Transfer Conference, Rome, May , 26~31
[37] [37] SteinerD, Schlunder E U. Heat transfer and pressure drop for boiling nitrogen flowing in a horizontal tube 1. saturated flow boiling[J].Cryogenics, 1976, 16 (3) : 387~399
[38] [38] SteinerD, Schlunder E U. Heat transfer and pressure drop for boiling nitrogen flowing in a horizontal tube 2. Pressure drop[J]. Cryogenics, 1976, 16 (3) : 457~764
[39] [39] Klimenko V V, Sudarchikov A M. Investigation of forced flow boiling of nitrogen in a long vertical tube[J]. Cryogenics, 1983,23 (3) : 379~385
[40] [40] Ren Xin, Zhang Peng, Wang Ruzhu. Experimental research on pool boiling heat transfer of liquid nitrogen in open space and capillary tubes[J]. Cryogenics and Superconductivity, 2005,33(3): 21~24
[41] [41] Qi Shouliang. Flow and Heat Transfer of Liquid Nitrogen in Micro-Tubes[D]. Shanghai: Shanghai Jiao tong University, 2007
Get Citation
Copy Citation Text
Tian Changqing, Xu Hongbo, Cao Hongzhang, Si Chunqiang. Cooling Technology for High-Power Solid-State Laser[J]. Chinese Journal of Lasers, 2009, 36(7): 1686