Chinese Journal of Lasers, Volume. 50, Issue 8, 0802401(2023)
Research Progress on Femtosecond Laser Fabrication of Nonlinear Photonic Crystals
[1] Armstrong J A, Bloembergen N, Ducuing J et al. Interactions between light waves in a nonlinear dielectric[J]. Physical Review, 127, 1918-1939(1962).
[2] Berger V. Nonlinear photonic crystals[J]. Physical Review Letters, 81, 4136-4139(1998).
[3] Chen J J, Chen X F. Phase matching in three-dimensional nonlinear photonic crystals[J]. Physical Review A, 80, 013801(2009).
[4] Yamada M, Nada N, Saitoh M et al. First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation[J]. Applied Physics Letters, 62, 435-436(1993).
[5] Sugioka K, Cheng Y. Ultrafast lasers: reliable tools for advanced materials processing[J]. Light: Science & Applications, 3, e149(2014).
[6] Franken P A, Ward J F. Optical harmonics and nonlinear phenomena[J]. Reviews of Modern Physics, 35, 23-39(1963).
[7] Fejer M M, Magel G A, Jundt D H et al. Quasi-phase-matched second harmonic generation: tuning and tolerances[J]. IEEE Journal of Quantum Electronics, 28, 2631-2654(1992).
[8] Ma B Q, Wang T[M]. Researches on nonlinear photonic crystals, 17-19(2013).
[9] Zhu S N, Zhu Y Y, Ming N B et al. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice[J]. Science, 278, 843-846(1997).
[10] Zhu S N, Zhu Y Y, Qin Y Q et al. Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3[J]. Physical Review Letters, 78, 2752-2755(1997).
[11] Wang X H, Gu B Y. Nonlinear frequency conversion in 2D χ(2) photonic crystals and novel nonlinear double-circle construction[J]. The European Physical Journal B - Condensed Matter and Complex Systems, 24, 323-326(2001).
[12] Saltiel S M, Kivshar Y S. Phase matching in nonlinear χ(2) photonic crystals[J]. Optics Letters, 25, 1204-1206(2000).
[13] Saltiel S M, Kivshar Y S. All-optical deflection and splitting by second-order cascading[J]. Optics Letters, 27, 921-923(2002).
[14] Saltiel S m, Krolikowski W, Neshev D N et al. Generation of Bessel beams by parametric frequency doubling in annular nonlinear periodic structures[J]. Optics Express, 15, 4132-4138(2007).
[15] Saltiel S M, Neshev D N, Fischer R et al. Generation of second-harmonic conical waves via nonlinear Bragg diffraction[J]. Physical Review Letters, 100, 103902(2008).
[16] Arie A, PeriodicVoloch N. quasi-periodic, and random quadratic nonlinear photonic crystals[J]. Laser & Photonics Reviews, 4, 355-373(2010).
[17] Zhang J, Zhao X H, Zheng Y L et al. Universal modeling of second-order nonlinear frequency conversion in three-dimensional nonlinear photonic crystals[J]. Optics Express, 26, 15675-15682(2018).
[18] Pogosian T, Lai N D. Theoretical investigation of three-dimensional quasi-phase-matching photonic structures[J]. Physical Review A, 94, 063821(2016).
[19] Du J H, Song W, Zhang H J. Advances in three-dimensional quasi-phase matching[J]. Chinese Journal of Lasers, 48, 1208001(2021).
[20] Chen J J, Chen X F. Generation of conical and spherical second harmonics in three-dimensional nonlinear photonic crystals with radial symmetry[J]. Journal of the Optical Society of America B, 28, 241-246(2011).
[21] Feng D, Ming N B, Hong J F et al. Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains[J]. Applied Physics Letters, 37, 607-609(1980).
[22] Wang W S, Zou Q, Geng Z H et al. Study of LiTaO3 crystals grown with a modulated structure I. Second harmonic generation in LiTaO3 crystals with periodic laminar ferroelectric domains[J]. Journal of Crystal Growth, 79, 706-709(1986).
[23] Lim E J, Fejer M M, Byer R L et al. Blue light generation by frequency doubling in periodically poled lithium niobate channel waveguide[J]. Electronics Letters, 25, 731-732(1989).
[24] Lim E J, Fejer M M, Byer R L. Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide[J]. Electronics Letters, 25, 174-175(1989).
[25] Webjorn J, Laurell F, Arvidsson G. Blue light generated by frequency doubling of laser diode light in a lithium niobate channel waveguide[J]. IEEE Photonics Technology Letters, 1, 316-318(1989).
[26] Maruo S, Ikuta K, Korogi H. Submicron manipulation tools driven by light in a liquid[J]. Applied Physics Letters, 82, 133-135(2002).
[27] Wu D, Wu S Z, Niu L G et al. High numerical aperture microlens arrays of close packing[J]. Applied Physics Letters, 97, 031109(2010).
[28] Amato L, Gu Y, Bellini N et al. Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip[J]. Lab on a Chip, 12, 1135-1142(2012).
[29] Narayan R, Goering P. Laser micro- and nanofabrication of biomaterials[J]. MRS Bulletin, 36, 973-982(2011).
[30] Fahy S, Merlin R. Reversal of ferroelectric domains by ultrashort optical pulses[J]. Physical Review Letters, 73, 1122-1125(1994).
[31] Zhu H S, Chen X F, Chen H Y et al. Formation of domain reversal by direct irradiation with femtosecond laser in lithium niobate[J]. Chinese Optics Letters, 7, 169-172(2009).
[32] Lao H Y, Zhu H S, Chen X F. Threshold fluence for domain reversal directly induced by femtosecond laser in lithium niobate[J]. Applied Physics A, 101, 313-317(2010).
[33] Chen X, Karpinski P, Shvedov V et al. Two-dimensional domain structures in lithium niobate via domain inversion with ultrafast light[J]. Photonics Letters of Poland, 8, 33-35(2016).
[34] Muir A C, Sones C L, Mailis S et al. Direct-writing of inverted domains in lithium niobate using a continuous wave ultra violet laser[J]. Optics Express, 16, 2336-2350(2008).
[35] Steigerwald H, Ying Y J, Eason R W et al. Direct writing of ferroelectric domains on the x- and y-faces of lithium niobate using a continuous wave ultraviolet laser[J]. Applied Physics Letters, 98, 062902(2011).
[36] Sones C L, Valdivia C E, Scott J G et al. Ultraviolet laser-induced sub-micron periodic domain formation in congruent undoped lithium niobate crystals[J]. Applied Physics B, 80, 341-344(2005).
[37] Imbrock J, Hanafi H, Ayoub M et al. Local domain inversion in MgO-doped lithium niobate by pyroelectric field-assisted femtosecond laser lithography[J]. Applied Physics Letters, 113, 252901(2018).
[38] Chen X, Karpinski P, Shvedov V et al. Ferroelectric domain engineering by focused infrared femtosecond pulses[J]. Applied Physics Letters, 107, 141102(2015).
[39] Liu S, Switkowski K, Chen X et al. Broadband enhancement of Čerenkov second harmonic generation in a sunflower spiral nonlinear photonic crystal[J]. Optics Express, 26, 8628-8633(2018).
[40] Zhang S G, Yao J H, Shi Q et al. Fabrication and characterization of periodically poled lithium niobate waveguide using femtosecond laser pulses[J]. Applied Physics Letters, 92, 231106(2008).
[41] Huang Z C, Tu C H, Zhang S G et al. Femtosecond second-harmonic generation in periodically poled lithium niobate waveguides written by femtosecond laser pulses[J]. Optics Letters, 35, 877-879(2010).
[42] Campbell S, Thomson R R, Hand D P et al. Frequency-doubling in femtosecond laser inscribed periodically-poled potassium titanyl phosphate waveguides[J]. Optics Express, 15, 17146-17150(2007).
[43] Zhang S G, Yao J H, Liu W W et al. Second harmonic generation of periodically poled potassium titanyl phosphate waveguide using femtosecond laser pulses[J]. Optics Express, 16, 14180-14185(2008).
[44] Wang L, Zhang X T, Li L Q et al. Second harmonic generation of femtosecond laser written depressed cladding waveguides in periodically poled MgO: LiTaO3 crystal[J]. Optics Express, 27, 2101-2111(2019).
[45] Triplett M, Khaydarov J, Xu X Z et al. Multi-watt, broadband second-harmonic-generation in MgO: PPSLT waveguides fabricated with femtosecond laser micromachining[J]. Optics Express, 27, 21102-21115(2019).
[46] Ding Y, Li Q, Li J Y et al. Application of ultrafast lasers in the manufacture of passive optical waveguide devices: a review[J]. Chinese Journal of Lasers, 48, 0802020(2021).
[47] Chen X, Karpinski P, Shvedov V et al. Quasi-phase matching via femtosecond laser-induced domain inversion in lithium niobate waveguides[J]. Optics Letters, 41, 2410-2413(2016).
[48] Xu T X, Switkowski K, Chen X et al. Three-dimensional nonlinear photonic crystal in ferroelectric Barium calcium titanate[J]. Nature Photonics, 12, 591-595(2018).
[49] Mazur L M, Liu S, Chen X et al. Localized ferroelectric domains via laser poling in monodomain calcium Barium niobate crystal[J]. Laser & Photonics Reviews, 15, 2100088(2021).
[50] Burghoff J, Hartung H, Nolte S et al. Structural properties of femtosecond laser-induced modifications in LiNbO3[J]. Applied Physics A, 86, 165-170(2007).
[51] Lee Y L, Yu N E, Jung C et al. Second-harmonic generation in periodically poled lithium niobate waveguides fabricated by femtosecond laser pulses[J]. Applied Physics Letters, 89, 171103(2006).
[52] Osellame R, Lobino M, Chiodo N et al. Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient[J]. Applied Physics Letters, 90, 241107(2007).
[53] Deshpande D C, Malshe A P, Stach E A et al. Investigation of femtosecond laser assisted nano and microscale modifications in lithium niobate[J]. Journal of Applied Physics, 97, 074316(2005).
[54] Burghoff J, Nolte S, Tünnermann A. Origins of waveguiding in femtosecond laser-structured LiNbO3[J]. Applied Physics A, 89, 127-132(2007).
[55] Wei D Z, Wang C W, Wang H J et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal[J]. Nature Photonics, 12, 596-600(2018).
[56] Thomas J, Hilbert V, Geiss R et al. Quasi phase matching in femtosecond pulse volume structured x-cut lithium niobate[J]. Laser & Photonics Reviews, 7, L17-L20(2013).
[57] Kroesen S, Tekce K, Imbrock J et al. Monolithic fabrication of quasi phase-matched waveguides by femtosecond laser structuring the χ(2) nonlinearity[J]. Applied Physics Letters, 107, 101109(2015).
[58] Imbrock J, Wesemann L, Kroesen S et al. Waveguide-integrated three-dimensional quasi-phase-matching structures[J]. Optica, 7, 28-34(2020).
[59] Zhu B, Liu H G, Chen Y P et al. High conversion efficiency second-harmonic beam shaping via amplitude-type nonlinear photonic crystals[J]. Optics Letters, 45, 220-223(2019).
[60] Liu D W, Liu S, Mazur L M et al. Smart optically induced nonlinear photonic crystals for frequency conversion and control[J]. Applied Physics Letters, 116, 051104(2020).
[61] Liu S, Switkowski K, Xu C L et al. Nonlinear wavefront shaping with optically induced three-dimensional nonlinear photonic crystals[J]. Nature Communications, 10, 3208(2019).
[62] Wei D Z, Wang C W, Xu X Y et al. Efficient nonlinear beam shaping in three-dimensional lithium niobate nonlinear photonic crystals[J]. Nature Communications, 10, 4193(2019).
[63] Liu S, Mazur L M, Królikowski W et al. Nonlinear volume holography in 3D nonlinear photonic crystals[J]. Laser & Photonics Review, 14, 2000224(2020).
[64] Wang B X, Hong X M, Wang K et al. Nonlinear detour phase holography[J]. Nanoscale, 13, 2693-2702(2021).
[65] Zhu B, Liu H G, Liu Y A et al. Second-harmonic computer-generated holographic imaging through monolithic lithium niobate crystal by femtosecond laser micromachining[J]. Optics Letters, 45, 4132-4135(2020).
[66] Chen P C, Wang C W, Wei D Z et al. Quasi-phase-matching-division multiplexing holography in a three-dimensional nonlinear photonic crystal[J]. Light: Science & Applications, 10, 146(2021).
[67] Halasyamani P S, Rondinelli J M. The must-have and nice-to-have experimental and computational requirements for functional frequency doubling deep-UV crystals[J]. Nature Communications, 9, 2972(2018).
[68] Zhao Z G, Xuan H W, Wang J C et al. Research progresses on vacuum-ultraviolet 193-nm band solid-state lasers[J]. Acta Optica Sinica, 42, 1134010(2022).
[69] Togashi T, Kanai T, Sekikawa T et al. Generation of vacuum-ultraviolet light by an optically contacted, prism-coupled KBe2BO3F2 crystal[J]. Optics Letters, 28, 254-256(2003).
[70] Dai S B, Chen M, Zhang S J et al. 2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd∶YAG laser in KBBF[J]. Laser Physics Letters, 13, 035401(2016).
[71] Shao M C, Liang F, Yu H H et al. Pushing periodic-disorder-induced phase matching into the deep-ultraviolet spectral region: theory and demonstration[J]. Light: Science & Applications, 9, 45(2020).
[72] Shao M C, Liang F, Yu H H et al. Angular engineering strategy of an additional periodic phase for widely tunable phase-matched deep-ultraviolet second harmonic generation[J]. Light: Science & Applications, 11, 31(2022).
[73] Jesacher A, Booth M J. Parallel direct laser writing in three dimensions with spatially dependent aberration correction[J]. Optics Express, 18, 21090-21099(2010).
[74] Cumming B P, Jesacher A, Booth M J et al. Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate[J]. Optics Express, 19, 9419-9425(2011).
[75] Sun W G, Ji L F, Zheng J C et al. High-aspect-ratio photonic-crystal structure of lithium niobate fabricated via femtosecond Bessel beam direct writing[J]. Chinese Journal of Lasers, 49, 1002503(2022).
[76] Ding K W, Wang C, Luo Z et al. Principle and method of ultrafast laser beam shaping and its application in functional microstructure fabrication[J]. Chinese Journal of Lasers, 48, 0202005(2021).
Get Citation
Copy Citation Text
Longfu Li, Leran Zhang, Liqun Xu, Xin Li, Changrui Liao, Yiping Wang, Dong Wu. Research Progress on Femtosecond Laser Fabrication of Nonlinear Photonic Crystals[J]. Chinese Journal of Lasers, 2023, 50(8): 0802401
Category: Laser Micro-Nano Manufacturing
Received: Jul. 18, 2022
Accepted: Aug. 31, 2022
Published Online: Apr. 14, 2023
The Author Email: Xin Li (lixinkiller@nudt.edu.cn), Changrui Liao (cliao@szu.edu.cn)