High Power Laser and Particle Beams, Volume. 33, Issue 6, 065002(2021)
Research progress on evolution phenomena and mechanisms of repetitively pulsed streamer discharge
[3] Li Yao, Yang Dezheng, Qiao Junjie, et al. The dynamic evolution and interaction with dielectric material of the discharge in packed bed reactor[J]. Plasma Sources Science and Technology, 29, 055004(2020).
[5] Zhou Renwu, Zhou Rusen, Wang Peiyu, et al. Plasma-activated water: generation, origin of reactive species and biological applications[J]. Journal of Physics D: Applied Physics, 53, 303001(2020).
[6] Mizuno K, Yonetamari K, Shirakawa Y, et al. Anti-tumor immune response induced by nanosecond pulsed streamer discharge in mice[J]. Journal of Physics D: Applied Physics, 50, 12LT01(2017).
[7] Lu X, Naidis G V, Laroussi M, et al. Guided ionization waves: theory and experiments[J]. Physics Reports, 540, 123-166(2014).
[10] Nijdam S, Teunissen J, Ebert U. The physics of streamer discharge phenomena[J]. Plasma Sources Science and Technology, 29, 103001(2020).
[11] Zhao Zheng, Li Jiangtao. Repetitively pulsed gas discharges: memory effect and discharge mode transition[J]. High Voltage, 5, 569-582(2020).
[12] Pai D Z, Lacoste D A, Laux C O. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure[J]. Journal of Applied Physics, 107, 093303(2010).
[13] Zhang Cheng, Shao Tao, Yan Ping, et al. Nanosecond-pulse gliding discharges between point-to-point electrodes in open air[J]. Plasma Sources Science and Technology, 23, 035004(2014).
[14] Tholin F, Bourdon A. Influence of the external electrical circuit on the regimes of a nanosecond repetitively pulsed discharge in air at atmospheric pressure[J]. Plasma Physics and Controlled Fusion, 57, 014016(2015).
[15] Ding C, Khomenko A Y, Shcherbanev S A, et al. Filamentary nanosecond surface dielectric barrier discharge. Experimental comparison of the streamer-to-filament transition for positive and negative polarities[J]. Plasma Sources Science and Technology, 28, 085005(2019).
[16] Nijdam S, Wormeester G, Van Veldhuizen E M, et al. Probing background ionization: positive streamers with varying pulse repetition rate and with a radioactive admixture[J]. Journal of Physics D: Applied Physics, 44, 455201(2011).
[17] Simek M. Determination of N2(
[18] Nijdam S, Takahashi E, Markosyan A H, et al. Investigation of positive streamers by double-pulse experiments, effects of repetition rate and gas mixture[J]. Plasma Sources Science and Technology, 23, 025008(2014).
[19] Tholin F, Bourdon A. Simulation of the hydrodynamic expansion following a nanosecond pulsed spark discharge in air at atmospheric pressure[J]. Journal of Physics D: Applied Physics, 46, 365205(2013).
[20] Shao Tao, Sun Guangsheng, Yan Ping, et al. An experimental investigation of repetitive nanosecond-pulse breakdown in air[J]. Journal of Physics D: Applied Physics, 39, 2192-2197(2006).
[21] Nagaraja S, Yang V, Adamovich I. Multi-scale modelling of pulsed nanosecond dielectric barrier plasma discharges in plane-to-plane geometry[J]. Journal of Physics D: Applied Physics, 46, 155205(2013).
[22] Zhao Z, Li J T. Integrated effect on evolution of streamer dynamics under long-term repetitive sub-microsecond pulses in high-pressure nitrogen[J]. Plasma Sources Science and Technology, 28, 115019(2019).
[24] Fu Pengyu, Zhao Zhibin, Li Xuebao, et al. The role of time-lag in the surface discharge inception under positive repetitive pulse voltage[J]. Physics of Plasmas, 25, 093518(2018).
[25] Pejovic M M, Ristic G S. Memory effects in argon, nitrogen, and hydrogen[J]. IEEE Transactions on Plasma Science, 30, 1315-1319(2002).
[26] Pejović M M, Živanović E, Pejović M M, et al. Analysis of processes responsible for the memory effect in air at low pressures[J]. Plasma Sources Science and Technology, 19, 045021(2010).
[27] Shao Tao, Sun Guangsheng, Yan Ping, et al. Breakdown phenomena in nitrogen due to repetitive nanosecond-pulses[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 14, 813-819(2007).
[28] Pai D Z, Lacoste D A, Laux C O. Nanosecond repetitively pulsed discharges in air at atmospheric pressure-the spark regime[J]. Plasma Sources Science and Technology, 19, 065015(2010).
[29] [29] Shao Tao. Study on repetitive nanosecondpulse breakdown in gases[D]. Beijing: Institute of Electrical Engineering of the Chinese Academy of Sciences, 2006
[30] Pai D Z, Stancu G D, Lacoste D A, et al. Nanosecond repetitively pulsed discharges in air at atmospheric pressure—the glow regime[J]. Plasma Sources Science and Technology, 18, 045030(2009).
[31] Naidis G V. Simulation of spark discharges in high-pressure air sustained by repetitive high-voltage nanosecond pulses[J]. Journal of Physics D: Applied Physics, 41, 234017(2008).
[32] Höft H, Kettlitz M, Becker M M, et al. Breakdown characteristics in pulsed-driven dielectric barrier discharges: influence of the pre-breakdown phase due to volume memory effects[J]. Journal of Physics D: Applied Physics, 47, 465206(2014).
[33] Nemschokmichal S, Tschiersch R, Höft H, et al. Impact of volume and surface processes on the pre-ionization of dielectric barrier discharges: advanced diagnostics and fluid modeling[J]. The European Physical Journal D, 72, 89(2018).
[34] Acker F E, Penney G W. Influence of previous positive streamers on streamer propagation and breakdown in a positive point-to-plane gap[J]. Journal of Applied Physics, 39, 2363-2369(1968).
[35] Hartmann G, Gallimberti I. The influence of metastable molecules on the streamer progression[J]. Journal of Physics D: Applied Physics, 8, 670-680(1975).
[37] Tholin F, Bourdon A. Influence of temperature on the glow regime of a discharge in air at atmospheric pressure between two point electrodes[J]. Journal of Physics D: Applied Physics, 44, 385203(2011).
[38] Li Y, Van Veldhuizen E M, Zhang G J, et al. Positive double-pulse streamers: how pulse-to-pulse delay influences initiation and propagation of subsequent discharges[J]. Plasma Sources Science and Technology, 27, 125003(2018).
[39] Kazemi M R, Sugai T, Tokuchi A, et al. Study of pulsed atmospheric discharge using solid-state LTD[J]. IEEE Transactions on Plasma Science, 45, 2323-2327(2017).
[40] MacGregor S J, Turnbull S M, Tuema F A, et al. Factors affecting and methods of improving the pulse repetition frequency of pulse-charged and DC-charged high-pressure gas switches[J]. IEEE Transactions on Plasma Science, 25, 110-117(1997).
[41] Chen She, Heijmans L C J, Zeng Rong, et al. Nanosecond repetitively pulsed discharges in N2-O2 mixtures: inception cloud and streamer emergence[J]. Journal of Physics D: Applied Physics, 48, 175201(2015).
[42] Komuro A, Ono R. Two-dimensional simulation of fast gas heating in an atmospheric pressure streamer discharge and humidity effects[J]. Journal of Physics D: Applied Physics, 47, 155202(2014).
[43] [43] Starikovskiy A, Pancheshnyi S, Rakitin A. Periodic pulse disge selffocusing streamertospark transition in undercritical electric field[C]Proceedings of the 49th AIAA Aerospace Sciences Meeting Including the New Hizons Fum Aerospace Exposition. 2011.
[44] Chen Xiancong, Zhu Yifei, Wu Yun. Modeling of streamer-to-spark transitions in the first pulse and the post discharge stage[J]. Plasma Sources Science and Technology, 29, 095006(2020).
[45] Pancheshnyi S. Role of electronegative gas admixtures in streamer start, propagation and branching phenomena[J]. Plasma Sources Science and Technology, 14, 645-653(2005).
[46] Tholin F, Bourdon A. Simulation of the stable ‘quasi-periodic’ glow regime of a nanosecond repetitively pulsed discharge in air at atmospheric pressure[J]. Plasma Sources Science and Technology, 22, 045014(2013).
[47] [47] Raĭzer Y P. Gas disge physics[M]. Berlin: SpringerVerlag, 1991.
[48] Golubovskii Y B, Maiorov V A, Behnke J, et al. Influence of interaction between charged particles and dielectric surface over a homogeneous barrier discharge in nitrogen[J]. Journal of Physics D: Applied Physics, 35, 751-761(2002).
[49] Deng Junbo, Matsuoka S, Kumada A, et al. The influence of residual charge on surface discharge propagation[J]. Journal of Physics D: Applied Physics, 43, 495203(2010).
[50] Li Chuanyang, Lin Chuanjie, Zhang Bo, et al. Understanding surface charge accumulation and surface flashover on spacers in compressed gas insulation[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 25, 1152-1166(2018).
[51] Guaitella O, Marinov I, Rousseau A. Role of charge photodesorption in self-synchronized breakdown of surface streamers in air at atmospheric pressure[J]. Applied Physics Letters, 98, 071502(2011).
[52] Winters C, Petrishchev V, Yin Zhiyao, et al. Surface charge dynamics and OH and H number density distributions in near-surface nanosecond pulse discharges at a liquid/vapor interface[J]. Journal of Physics D: Applied Physics, 48, 424002(2015).
[54] Xie Qing, Ren Jie, Huang He, et al. Aging characteristics of epoxy resin discharged by very fast transient overvoltage in SF6[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 24, 1178-1188(2017).
[55] Chang Chao, Liu Guozhi, Tang Chuanxiang, et al. Review of recent theories and experiments for improving high-power microwave window breakdown thresholds[J]. Physics of Plasmas, 18, 055702(2011).
[56] Zeng Rong, Zhuang Chijie, Yu Zhanqing, et al. Electric field step in air gap streamer discharges[J]. Applied Physics Letters, 99, 221503(2011).
[57] [57] Wu Chuanqi. Research on the acteristics of long air gap positive streamer disge under impulse voltage[D]. Wuhan: Huazhong University of Science Technology, 2014
[58] Nijdam S, Teunissen J, Takahashi E, et al. The role of free electrons in the guiding of positive streamers[J]. Plasma Sources Science and Technology, 25, 044001(2016).
[59] Yuan Xuchu, Li Hanwei, Abbas M F, et al. A 3D numerical study of positive streamers interacting with localized plasma regions[J]. Journal of Physics D: Applied Physics, 53, 425204(2020).
[60] Babaeva N Y, Naidis G V. Modeling of streamer interaction with localized plasma regions[J]. Plasma Sources Science and Technology, 27, 075018(2018).
[61] [61] Li Chenjie, Huang Zongze, Li Jiangtao, et al. Simulation of the disge regime transition under repetitive nanosecond pulses in nitrogen at atmospheric pressure[C]Proceedings of the 2020 IEEE International Conference on High Voltage Engineering Application (ICHVE). 2020: 9279861.
[62] Tarasenko V. Runaway electrons in diffuse gas discharges[J]. Plasma Sources Science and Technology, 29, 034001(2020).
[63] Iza F, Walsh J L, Kong M G. From submicrosecond- to nanosecond-pulsed atmospheric-pressure plasmas[J]. IEEE Transactions on Plasma Science, 37, 1289-1296(2009).
[64] Ito T, Kanazawa T, Hamaguchi S. Rapid breakdown mechanisms of open air nanosecond dielectric barrier discharges[J]. Physical Review Letters, 107, 065002(2011).
[65] Komuro A, Ono R, Oda T. Effects of pulse voltage rise rate on velocity, diameter and radical production of an atmospheric-pressure streamer discharge[J]. Plasma Sources Science and Technology, 22, 045002(2013).
[66] Wang Douyan, Namihira T. Nanosecond pulsed streamer discharges: II. Physics, discharge characterization and plasma processing[J]. Plasma Sources Science and Technology, 29, 023001(2020).
[67] Liu Zhengyan, Li Jie, Peng Bangfa, et al. Spatiotemporal analysis of streamer discharge in a wire-to-wire reactor with positive nanosecond pulse supply[J]. Journal of Physics D: Applied Physics, 53, 465203(2020).
[68] [68] Kolev Y D, Mesyats G A. Physics of pulsed breakdown in gases[M]. Yekaterinburg: URO Press, 1998.
[69] Wang Douyan, Okada S, Matsumoto T, et al. Pulsed discharge induced by nanosecond pulsed power in atmospheric air[J]. IEEE Transactions on Plasma Science, 38, 2746-2751(2010).
[70] Qi Fei, Li Yiyang, Zhou Rusen, et al. Uniform atmospheric pressure plasmas in a 7 mm air gap[J]. Applied Physics Letters, 115, 194101(2019).
[71] Huang Bangdou, Takashima K, Zhu Ximing, et al. The influence of the repetition rate on the nanosecond pulsed pin-to-pin microdischarges[J]. Journal of Physics D: Applied Physics, 47, 422003(2014).
[72] Huang Bangdou, Carbone E, Takashima K, et al. The effect of the pulse repetition rate on the fast ionization wave discharge[J]. Journal of Physics D: Applied Physics, 51, 225202(2018).
[73] Zhao Z, Huang D D, Wang Y N, et al. Evolution of streamer dynamics and discharge mode transition in high-pressure nitrogen under long-term repetitive nanosecond pulses with different timescales[J]. Plasma Sources Science and Technology, 28, 085015(2019).
[74] Popov N A. Investigation of the mechanism for rapid heating of nitrogen and air in gas discharges[J]. Plasma Physics Reports, 27, 886-896(2001).
[75] Popov N A. Fast gas heating in a nitrogen–oxygen discharge plasma: I. Kinetic mechanism[J]. Journal of Physics D: Applied Physics, 44, 285201(2011).
[76] Mintoussov E I, Pendleton S J, Gerbault F G, et al. Fast gas heating in nitrogen–oxygen discharge plasma: II. Energy exchange in the afterglow of a volume nanosecond discharge at moderate pressures[J]. Journal of Physics D: Applied Physics, 44, 285202(2011).
[77] Xu D A, Lacoste D A, Rusterholtz D L, et al. Experimental study of the hydrodynamic expansion following a nanosecond repetitively pulsed discharge in air[J]. Applied Physics Letters, 99, 121502(2011).
[78] Rusterholtz D L, Lacoste D A, Stancu G D, et al. Ultrafast heating and oxygen dissociation in atmospheric pressure air by nanosecond repetitively pulsed discharges[J]. Journal of Physics D: Applied Physics, 46, 464010(2013).
[80] Shao Tao, Zhang Cheng, Niu Zheng, et al. Diffuse discharge, runaway electron, and x-ray in atmospheric pressure air in an inhomogeneous electrical field in repetitive pulsed modes[J]. Applied Physics Letters, 98, 021503(2011).
Get Citation
Copy Citation Text
Zheng Zhao, Chenjie Li, Xing Zhang, Xuchu Yuan, Anbang Sun, Jiangtao Li. Research progress on evolution phenomena and mechanisms of repetitively pulsed streamer discharge[J]. High Power Laser and Particle Beams, 2021, 33(6): 065002
Category:
Received: Mar. 15, 2021
Accepted: --
Published Online: Jul. 22, 2021
The Author Email: