Optical Technique, Volume. 47, Issue 1, 101(2021)
Research on face super-resolution reconstruction algorithm based on GAN
[1] [1] Kamal N, Thomas B. Super-resolution: a comprehensive survey[J]. Machine Vision and Applications,2014,25(6):1423-1468.
[2] [2] Dong C, Loy C, He K, et al. Learning a deep convolutional network for image super-resolution[C]∥ECCV. Springer International Publishing,2014:184-199.
[3] [3] Ian G, Jean P, Mehdi M, et al. Generative adversarial nets[C]∥In Advances in Neural Information Processing Systems,2014:2672-2680.
[4] [4] Christian L, Lucas T, Ferenc H, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu,USA:IEEE,2017:105-114.
[5] [5] Chao D, Chen C, He K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(2):295-307.
[6] [6] Tai Ying, Yang Jian, Liu Xiaoming. Image Super-resolution via deep recursive residual network[C]∥The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),Honolulu,USA:IEEE,2017:3147-3155.
[7] [7] Lai W, Huang J, Ahuja N, et al. Deep laplacian pyramid networks for fast and accurate Super-resolution[C]∥Computer Vision and Pattern Recognition.Honolulu,USA:IEEE,2017:5835-5843.
[8] [8] Zareapoor, Masoumeh, Celebi, et al. Diverse adversarial network for image super-resolution[J]. Signal Processing-image Communication,2019,74:191-200.
[9] [9] Pourya S, Masoumeh Z, Ruili W, et al. G-Ganisr: Gradual generative adversarial network for image super resolution[J]. Neurocomputing,2019,366:140-153.
[10] [10] Wang X, Yu K, Wu S, et al. ESRGAN: Enhanced Super-resolution generative adversarial networks[C]∥European Conference on Computer Vision(ECCV),Munich,Germany:IEEE,2018:63-79.
[11] [11] Yu X, Fernando B, Ghanem B, et al. Face superresolution guided by faci1al component heat maps[C]∥In Proc. Eur. Conf. Comput. Vis. (ECCV).Munich,Germany:IEEE,2018:217-233.
[13] [13] Blau Y, Mechrez R, Timofte R, et al. The 2018 PIRM challenge on perceptual image Super-resolution[J]. European Conference on Computer Vision,2018:334-355.
[14] [14] Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing,2004,13(4):600-612.
[15] [15] Liu Liyuan, Jiang Haoming, He Pengcheng, et al. On the variance of the adaptive learning rate and beyond[C]∥Eighth International Conference on Learning Representations (ICLR).Addis Ababa,Ethiopia:2020:1-15.
[16] [16] Halder S, Bhattacharjee D, Nasipuri M, et al. A fast FPGA based architecture for sobel edge detection[J]. Progress in VLSI Design and Test, Springer,2012:300-306.
[17] [17] He K, Zhang X, Ren S, et al. Delving deep into rectifiers: surpassing human-level performance on imagenet classification[C]∥CVPR, Boston,USA:IEEE,2015:1026-1034.
[18] [18] Ma C, Yang C Y, Yang X K, Yang M H. Learning a no-reference quality metric for single-image super-resolution[J]. Comput. Vis. Image Underst,2017:158: 1-16.
[19] [19] Mechrez R, Talmi I, Zelnik Manor L. The contextual loss for image transformation with non-aligned data[C]∥ECCV. LNCS, Munich, Germany:IEEE,2018,11218: 800-815.
Get Citation
Copy Citation Text
LI Xiaomeng, CHEN Zhaoxue. Research on face super-resolution reconstruction algorithm based on GAN[J]. Optical Technique, 2021, 47(1): 101
Category:
Received: Jul. 20, 2020
Accepted: --
Published Online: Apr. 12, 2021
The Author Email:
CSTR:32186.14.