Chinese Journal of Liquid Crystals and Displays, Volume. 39, Issue 9, 1243(2024)

Prototype distribution correction for few-shot point cloud classification

Yuanzhi FENG1,2, Yu XIA3, Jielong GUO1,4, Dongheng SHAO1,4, Jianfeng ZHANG1,4, and Xian WEI1,4、*
Author Affiliations
  • 1Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,Fuzhou 350002,China
  • 2University of Chinese Academy of Sciences,Beijing 100049,China
  • 3Shanghai Institute of Aerospace System Engineer,Shanghai 201108,China
  • 4Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China,Fuzhou 350108,China
  • show less
    Figures & Tables(8)
    Framework for prototype distribution correction
    Effect of the number of samples on the prototypes
    Visualization of feature distributions before and after prototype correction
    Impact of the number of generated features on classification accuracy
    • Table 1. Few-shot classification results on ModelNet40 and ModelNet40-C

      View table
      View in Article

      Table 1. Few-shot classification results on ModelNet40 and ModelNet40-C

      方法网络ModelNet40ModelNet40-C
      5way-1shot5way-5shot5way-1shot5way-5shot
      MetaOptNet22DGCNN75.77±0.8386.44±0.6273.34±0.8585.15±0.63
      RelationNet25DGCNN77.46±0.8085.11±0.61
      ProtoNet7DGCNN79.46±0.7688.65±0.5477.69±0.7786.81±0.58
      CIA5DGCNN83.46±0.8389.15±0.5080.64±0.8688.23±0.54
      Cross-Modality8DGCNN*83.89±0.7590.64±0.5281.87±0.7889.51±0.54
      Proto-CorrectionDGCNN_O83.66±0.7890.70±0.5180.79±0.8090.32±0.51
      Top-kDGCNN_O83.66±0.7890.59±0.5080.73±0.8090.29±0.51
    • Table 2. Few-shot classification results on ScanObjectNN and ScanObjectNN-PB

      View table
      View in Article

      Table 2. Few-shot classification results on ScanObjectNN and ScanObjectNN-PB

      方法网络ScanObjectNNScanObjectNN-PB
      5way-1shot5way-5shot5way-1shot5way-5shot
      MetaOptNet22DGCNN61.12±0.6667.73±0.4557.15±0.6365.56±0.50
      RelationNet25DGCNN54.23±0.6366.72±0.50
      ProtoNet7DGCNN60.46±0.6770.20±0.5259.29±0.6567.68±0.47
      CIA5DGCNN62.17±0.6871.31±0.4557.02±0.6867.37±0.49
      Cross-Modality8DGCNN*64.69±0.6474.60±0.4360.25±0.6371.00±0.47
      Proto-CorrectionDGCNN_O66.38±0.6976.53±0.4661.90±0.6871.14±0.48
      Top-kDGCNN_O66.34±0.7076.52±0.4761.85±0.6971.15±0.48
    • Table 3. Effects of orthogonal constraints for network parameters

      View table
      View in Article

      Table 3. Effects of orthogonal constraints for network parameters

      方法ModelNet40-1shotScanObjectNN-1shot
      DGCNNDGCNN_ODGCNNDGCNN_O
      MetaOptNet2275.77±0.8378.85±0.75(↑3.08)61.12±0.6661.72±0.58(↑0.60)
      RelationNet2577.46±0.8054.23±0.63
      ProtoNet779.46±0.7680.98±0.72(↑1.52)60.46±0.6763.73±0.59(↑3.27)
      CIA583.46±0.8384.31±0.79(↑0.85)62.17±0.6863.04±0.59(↑0.87)
      Cross-Modality883.89±0.7584.01±0.73(↑0.12)64.69±0.6465.16±0.65(↑0.47)
      Proto-Correction80.70±0.8683.66±0.78(↑2.96)62.01±0.6266.38±0.69(↑4.37)
      Top-k82.01±0.7783.66±0.78(↑1.65)63.05±0.6266.34±0.70(↑3.29)
    • Table 4. Effects of prototype correction method

      View table
      View in Article

      Table 4. Effects of prototype correction method

      Proto-CorrectionTop-kModelNet40ScanObjectNN
      5way-1shot5way-5shot5way-1shot5way-5shot
      ××80.98±0.7290.37±0.5063.73±0.5975.88±0.45
      ×83.66±0.7890.70±0.5166.38±0.6976.53±0.46
      83.66±0.7890.59±0.5066.34±0.7076.52±0.47
    Tools

    Get Citation

    Copy Citation Text

    Yuanzhi FENG, Yu XIA, Jielong GUO, Dongheng SHAO, Jianfeng ZHANG, Xian WEI. Prototype distribution correction for few-shot point cloud classification[J]. Chinese Journal of Liquid Crystals and Displays, 2024, 39(9): 1243

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 22, 2023

    Accepted: --

    Published Online: Nov. 13, 2024

    The Author Email: Xian WEI (xian.wei@fjirsm.ac.cn)

    DOI:10.37188/CJLCD.2023-0374

    Topics